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ERCOT and the Future of Electric Reliability in Texas 
Peter R. Hartley, Kenneth B. Medlock, III, and Shih Yu (Elsie) Hung 

Executive Summary 

Electricity reliability and resource adequacy in the Electric Reliability Council of Texas 
(ERCOT) have been top legislative, regulatory, and commercial priorities in Texas for the 
past few years. This stems from strong electricity demand (load) growth due to an expanding 
population and robust economic activity. Moreover, load is likely to continue to expand for 
the foreseeable future. Texas’ population is expected to continue to grow, and the economy is 
on solid footing, with added vectors for demand growth from electric vehicle (EV) 
penetration, cryptocurrency mining, carbon capture and storage (CCS) and hydrogen market 
expansion, and general trends toward increased electrification. There has even been a push 
toward electrification of oil and gas operations, which has manifested in very strong regional 
load growth in high oil and gas producing regions.  

While the evolution of demand in ERCOT is, by itself, enough to raise concerns about the 
future of resource adequacy, there has also been inadequate investment in dispatchable 
sources of generation in ERCOT — leading to greater overall system instability. In fact, 
ERCOT loads have been increasingly in excess of dispatchable generation capacity in both 
frequency and quantity since 2018. In 2023 alone, load exceeded dispatchable generation 
capacity for over 1,000 hours. This raises the risk of resource inadequacy and has coincided 
with an increase in ERCOT conservation notices and energy emergency alerts. 

There is also a general geographic inconsistency between load growth and generation 
capacity investment across ERCOT. This is not likely to self-correct, given that the drivers of 
load growth are centered around new industrial activity and population growth in high-load 
areas in the Texas Triangle — the urban megaregion consisting of the Houston, Dallas-Fort 
Worth, Austin, and San Antonio metropolitan areas. 

Analysis of locational marginal prices (LMPs) reveals that the market is already signaling that 
there are binding constraints related to patterns of generation, capacity investment, load 
growth, and transmission. Proper accounting and subsequent internalization of these signals 
is important for informing the optimal configuration of generation capacity, transmission, 
and storage with respect to load.  

Reliability can be enhanced with proper “insurance,” and ERCOT has a portfolio of options 
available. But policy will ultimately influence which options can be profitably exercised. 
Among the options identified herein are:  
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• investment in dispatchable forms of generation that can be called upon when
intermittent resources are not available while load is high,

• investment in storage capacity in utility areas and/or alongside industrial consumers
to facilitate a reduction of purchases from the grid during periods of high demand,

• investment in production area storage capacity alongside wind and solar generation to
allow a “smoothing” of sales from intermittent resources and promote a more efficient
use of transmission capacity,

• expansion of transmission capacity to alleviate existing constraints, fully recognizing
that the frequency and severity of constraints matter for the economic feasibility of
the transmission capacity investment, and

• siting future generation capacity closer to load centers to avoid grid-level bottlenecks.

No market structure can be void of risk because there will always be unexpected incidents 
and low-probability events that can compromise any system. But allowing structural risks to 
reliability that can be avoided at a reasonable cost is unacceptable. Therefore, appropriate 
market design and sufficient regulatory oversight are critical. This opens the door for policy 
discussions that include, but are not limited to, implementing market structures and/or 
incentives that ensure sufficient backup capacity and imposing adequate penalties for 
underperformance by generators under specific obligations. In the end, resource adequacy 
and reliability are in the best interests of producers and consumers alike, as they establish a 
platform for long-term growth. Identifying opportunities to provide reliability is paramount, 
and ERCOT has a substantial portfolio of options. 

Framing the Issues 

In Texas, electricity reliability has been a point of increasing concern, rising to the top of 
public discourse in the wake of Winter Storm Uri in February 2021. In previous research, we 
performed a detailed examination of various factors that were blamed for the extended 
power outage on the ERCOT electricity grid during Uri.1 We found that no single factor was 
fully responsible as all forms of generation capacity experienced failures, and coordination 
failures in identifying and addressing risks along fuel supply chains were also at fault.  

One issue we identified was the need to carefully analyze reserve margins as intermittent 
generation capacity expands. Texas is No. 1 in the nation in terms of existing wind capacity, 
as well as No. 1 in terms of planned capacity additions for wind and solar power. However, 
such aggressive growth of intermittent resources can compromise reliability when it is 
accompanied by little-to-no addition of dispatchable forms of generation, especially if system 
load continues to grow.  

In ERCOT, load has grown substantially over the past 20 years, driven by factors such as 
strong population growth, economic expansion, and increasing electrification of oil and gas 



3 

 

operations. In fact, total electricity consumption in Texas has doubled since 2000, with 
commercial sector demand increasing at the highest clip — by 66%. 

In 2022, the residential, commercial, and industrial sectors in Texas accounted for 36%, 34%, 
and 30%, respectively, of total load. The state’s electrification of home heating (61.5%) is 
already significantly higher than the national average (39.8%), and recent developments — 
for example, increased cryptocurrency mining, the adoption of EVs, and an overall drive to 
expand electrification of energy use more generally — serve to place high and growing 
demands on ERCOT. At the same time, burgeoning activities in CCS and the “green” 
hydrogen industry will increase the demand for electricity, with the speed and scale of those 
developments determining the extent to which they will impact the overall market.2 How 
ERCOT will respond to emergent and expanding concerns about resource adequacy and 
reliability is a core question. 

We begin with a discussion of the evolution of the Texas electrical grid, culminating in the 
formation of ERCOT and the creation of a competitive wholesale and retail marketplace. 
Then, we discuss ERCOT generation resources and the evolution of generation and load. This 
allows a deeper dive into current concerns about resource adequacy and reliability, with 
some key insights afforded from statistical analysis of locational marginal prices (LMPs). We 
conclude with a summary of the findings and some recommendations for further study. 

From Then Until Now: The Evolution of ERCOT 

What Is ERCOT? 

ERCOT is one of the three interconnected systems of the North American Electric Reliability 
Corporation (formerly the National Electricity Reliability Council), known as NERC, and 
one of six independent system operators and regional transmission organizations within 
NERC that work to ensure grid reliability. As such, it manages the grid and electricity flows 
to more than 26 million customers, which is roughly 90% of Texas’s load, 75% of whom are 
competitive-choice customers. As an independent system operator, ERCOT does not own 
any generation resources and does not participate as a buyer or seller in the market.  

ERCOT is regulated by the Public Utility Commission of Texas (PUCT) and the Texas 
Legislature. The PUCT was authorized by the Public Utility Regulatory Act of 1975 (PURA) 
and was given regulatory oversight over all market participants. So, the PUCT has oversight 
over ERCOT protocols, operating guidelines, and other rules, and it regulates transmission 
and distribution lines (rates and siting) and retail rates for entities that have opted out of the 
competitive ERCOT market.3 It also participates in transmission planning with regions 
outside of ERCOT. 
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As the Texas Legislature determined during electricity market restructuring in 1999, 
ERCOT’s role is to: 

• maintain system reliability,
• facilitate competitive wholesale and retail electricity markets, and
• ensure open access to transmission.

Stakeholders and members of ERCOT include consumers, cooperatives, independent 
generators, independent power marketers, retail electricity providers, investor-owned 
electric utilities (transmission and distribution providers), and municipally owned electric 
utilities.4 ERCOT market participants interact in real-time and day-ahead wholesale markets, 
energy and ancillary services market, and the retail market.5  

The ERCOT physical market is depicted in Figure 1. There are over 1,800 market 
participants. Qualified scheduling entities (QSEs) are resource entities (REs) that can submit 
offers to sell and/or bids to buy energy in the day-ahead market and real-time markets, offer 
or procure ancillary services needed to serve their load, and financially settle with ERCOT. 
Load serving entities (LSEs) buy wholesale power to provide electric service to individual 
and wholesale customers. Transmission/distribution service providers (TDSPs) own/operate 
equipment and facilities to transmit and/or distribute electricity and are required to provide 
nondiscriminatory access to the grid. Other participants include power marketers and 
aggregators. ERCOT serves as an intermediary between retail customers and wholesale 
market participants. Wholesale market participants face real-time price volatility that reflects 
supply-demand balance, while retail customers do not. However, the costs associated with 
wholesale market volatility are ultimately passed to retail customers in rate offerings.  

Figure 1 — ERCOT Physical Market and Electricity Flows 

Source: ERCOT. 

https://www.ercot.com/files/docs/2022/01/28/2022_02%20Wholesale%20101.pdf
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ERCOT’s Evolution: Independent Oversight, Reform, and Competition 

The evolution of ERCOT helps explain its structure and why it has minimal interconnection 
with the rest of the continental United States.6 As indicated in Figure 2, the path to the 
creation of ERCOT began in the first half of the 20th century, when the Public Utility 
Holding Company Act of 1935 (PUHCA) and Federal Power Act of 1920 (FPA) ended the 
existence of major multistate holding companies in the United States. The PUHCA gave the 
U.S. Securities and Exchange Commission regulatory authority over electric utility holding 
companies. The FPA gave authority over interstate electricity transactions to the Federal 
Power Commission (FPC), which decades later became the Federal Energy Regulatory 
Commission (FERC). 

Prior to these acts, many Texas power companies operated as part of multistate holding 
companies that were, in some cases, interconnected and that controlled a significant portion 
of the electricity assets in the state as well as across the country. To capture economies of 
scale and increase reliability, these companies developed and expanded transmission 
infrastructure to connect assets across power markets. However, to avoid federal oversight 
after the enactment of the PUHCA and FPA, some companies ceased interstate trade.  

In 1942, during World War II, interstate trade resumed as the FPC relieved utilities of 
federal oversight on the condition that they supply power to the war industries. However, 
after the war, companies in Texas abandoned interstate interconnections and chose to 
operate only within the state. This was strong evidence of the preference of utilities in Texas 
to operate independently of federal oversight. 

In 1967, Texas power companies augmented legacy architecture developed to supply power 
to defense industries during World War II to connect the South and North Texas Power 
Pools. This was the first incarnation of the “Texas grid.” Shortly thereafter, in 1970, state 
utilities established ERCOT as a private entity to ensure that system reliability guidelines 
promulgated under NERC, an initiative that emerged as a national policy priority following 
the 1965 Northeast Blackout.7 In 1975, the Texas Legislature passed the Public Utilities 
Regulatory Act (PURA), establishing state-level oversight of electricity rates and conditions 
for market entry.  

In 1976, West Texas Utilities system operators secretly connected the Texas Interconnected 
System to the interstate network, an incident known as the “Midnight Connection.” This 
caused companies such as Houston Light & Power and Texas Electric Service Companies to 
disconnect from the grid to avoid being entered into federal jurisdiction. This again 
underscores a strong preference among Texas utilities to avoid federal oversight while 
remaining interconnected with other utilities in the state. This preference, as revealed on 
multiple occasions across several decades, set the stage for the current “island” state of 
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ERCOT, which in turn affects resource requirements for meeting present loads. To this day, 
the state remains largely disconnected from the rest of the U.S., except for some direct 
current (DC) ties that allow power to flow in and out of Texas and some “switchable” 
generators that can supply power either to ERCOT or to a neighboring regional transmission 
organization.  

Figure 2 — Timeline of the Evolution of the Texas Grid 

Note: Data for Figure 2 is pulled from multiple sources and compiled by the authors. 
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In 1981, ERCOT assumed operation of the Texas Interconnected System as an independent 
nonprofit entity. Subsequent regulatory interventions have shaped the role and function of 
ERCOT. In 1995, the Texas Legislature passed a PURA amendment that established a 
competitive wholesale market in Texas. In 1996, the PUCT assigned ERCOT as a nonprofit 
independent system operator to ensure open access to the transmission grid. Texas Senate 
Bill (SB) 7, passed in 1999 and subsequently signed into law, mandated ERCOT to develop a 
market architecture that promoted retail competition. After the PUCT approved the 
protocols for a wholesale market structure established by ERCOT in 2001, the current 
competitive market in Texas emerged.  

Along with federal subsidies, a renewable portfolio standard adopted as part of SB 7 
promoted growth in wind generation capacity. However, the best wind resources in Texas 
are not located near load centers; transmission constraints emerged and signaled a need for 
more transmission to connect wind in West Texas to load in the Texas Triangle. So, in 2005, 
the Texas Legislature passed SB 20 to establish the Competitive Renewable Energy Zone 
(CREZ) initiative.8 The CREZ initiative authorized PUCT and ERCOT to develop 
transmission that would deliver wind energy from West and Northwest Texas to load centers 
in the east and central parts of the state. By 2014, all CREZ transmission lines were 
completed at a cost of about $7 billion, totaling 3,600 miles of open access 345-kilovolt (kV) 
lines with a designed transmission capacity of 18.5 gigawatts (GW).9 This further catalyzed 
expansion of wind capacity in West Texas, where prolific wind resources are located. 

Although the competitive market in ERCOT was not without its detractors, its benefits to 
consumers were notable.10 ERCOT remained largely unchanged until the fallout from 
Winter Storm Uri in February 2021, which exposed fragilities in the Texas energy system.11 
Some of the problems were avoidable, but they triggered a massive wave of deliberation in 
the Texas Legislature around competitive market structure, interconnecting ERCOT with 
neighboring states, implementing a capacity market, mandating weatherization of electricity 
infrastructure, and reevaluating the performance of ERCOT as a grid operator. Subsequent 
action in the Texas Legislature was largely focused on (i) requiring generation and 
transmission to improve performance in extreme weather (SB 3), (ii) restructuring the board 
of ERCOT (SB 2), and (iii) evaluating potential PUCT wholesale market design reforms.  

The PUCT split its reforms into two phases. Phase I includes various market design elements, 
including lowering the operating reserves demand curve (ORDC) cap from $9,000 to $5,000 
per megawatt-hour (MWh) and increasing the minimum reserves deemed necessary to avoid 
system-wide failure to 3,000 megawatts (MW).12 The newly created “firm fuel supply 
service,” which targets gas generators and on-site dual fuel resources, is intended to enforce 
“firm fuel” availability for 48 hours for increased reliability. Another initiative involves 
greater administrative procurement of ancillary services — including emergency response, 
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fast frequency response, contingency reserves, non-spinning reserves, and voltage support — 
to incentivize the availability of capacity in the day-ahead market. Phase II focuses on 
ensuring ERCOT has sufficient operating capacity during extreme events resulting from 
weather, high demand, and/or low output from renewables. This phase also introduced a 
“load-side reliability mechanism” in which multiple proposals were developed and 
evaluated.13 

Activity around ERCOT market reform has since continued. In January 2023, the PUCT 
voted to adopt a Performance Credit Mechanism (PCM) that incentivizes increased 
availability of dispatchable generation such as coal, natural gas, and nuclear power.14 ERCOT 
was directed to evaluate bridging options until the PCM is fully implemented. In June 2023, 
the ERCOT Contingency Reserve Service (ECRS) was adopted to enhance reliability and 
mitigate real-time grid stress. ECRS is a daily procured ancillary service that complements 
other ancillary service products.15 Proposition 7, which passed on Nov. 7, 2023, with almost 
65% of the popular vote, amended the Texas Constitution to create the Texas Energy Fund, 
to be administered by the PUCT. The Texas Energy Fund provides low-interest rate loans to 
finance the construction of new and upgraded dispatchable generation resources. SB 2627, 
which is the implementing legislation, was passed during the 2023 legislative session.  

ERCOT Generation Resources 

The ERCOT generation portfolio is substantial, totaling over 127 GW in nameplate capacity. 
As of summer 2023, ERCOT nameplate capacity consisted of wind (37.7 GW), solar (15.5 
GW), nuclear (5.0 GW), coal (14.4 GW), natural gas (47.1 GW), and hydro/biomass/batteries 
(4.0 GW), plus DC ties to neighboring regions (1.2 GW) and natural gas capacity that is 
switchable (3.7 GW) into and out of ERCOT. Figure 3 details the evolution of nameplate 
capacity by resource type from 2010-2023. 

While impressive, there are valid concerns about whether the ERCOT generation fleet is 
sufficient. To begin, new natural gas plants have merely compensated for the retirements of 
older coal facilities. Wind and solar, however, have each seen massive growth. Since 2000, 
wind capacity has expanded from 160 MW of installed capacity to over 37,000 MW — an 
average annual growth rate of more than 26%. Over the same period, solar capacity has 
increased from 15 MW to almost 16,000 MW — an annual average growth rate of over 70%. 

While average generation from wind and solar have also increased in line with capacity, 
averages are meaningless for grid stability in electric power markets. Grid stability requires 
adequate resources to match the temporal fluctuations of load. If resources cannot deliver 
power on demand, the grid will be exposed to an increasing risk of failure, at which point the 
need to call on various emergency measures increases. Because wind and solar are not 
dispatchable, they are not traditional “on-demand” resources, and grid stability can be 
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compromised if they are not available when load exceeds the sum of dispatchable resources. 
Thus, while overall nameplate capacity has expanded considerably with the addition of wind 
and solar, dispatchable capacity has not. Given the demand growth in ERCOT, system load 
has exceeded dispatchable capacity with increasing frequency since 2018.  

Figure 3 — Generation Capacity by Energy Type Plus Peak and Average Load, 2010–23 

Source: ERCOT. Data compiled by authors. 

ERCOT’s Growing Load 

ERCOT load has steadily increased over the past two decades in lockstep with population 
growth and increases in gross domestic product (GDP) in Texas (see Figure 4). In fact, 
regressing average annual load ( LOAD ) on state GDP ( GDP ), state population ( POP ), and 
the average annual retail electricity price ( P ) over the period 2002–22, all transformed to 
natural logs, reveals 

( ) ( ) ( ) ( )2.769 0.343 0.151 0.099
ln 1.448 0.648ln 0.356ln 0.027 lnt t t tLOAD POP GDP P= + + −

Durbin-Watson, d 1.701= ; 2 0.938R =

with standard errors in parentheses under the parameter estimates.  
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Figure 4 — ERCOT Load, Texas GDP per Capita, and Texas Population, 2002–23 

Sources: ERCOT, the Federal Reserve database (FRED), and the U.S. Census Bureau. 

The parameter estimates can be directly interpreted as elasticities, given the variables are in 
natural log form, and the parameter estimates on population and GDP are statistically 
significant with t-stats of 1.89 and 2.36, respectively. The parameter estimate on price is 
small and not statistically significant, but there may be some simultaneity issues with annual 
data.16 Overall, the model indicates a 1% increase in population will yield a 0.65% increase in 
average annual load, while a 1% increase in GDP will yield a 0.36% increase in average 
annual load, all else equal. 

Since 2002, the average annual load has increased by 2.2% per year, amounting to an 
increase of about 60%, or almost 19 GW. Over the same period, peak load increased by 
almost 30 GW. This highlights a major point of emerging stress for the grid, because flexible, 
dispatchable resources are needed most acutely in peak periods. Resource adequacy is not 
about average loads; it is about peak loads. Continued economic and population growth in 
ERCOT will continue to raise the demand for flexible, dispatchable resources.  

Existing projections, based on ERCOT’s Capacity, Demand, and Reserves reports, indicate 
that most future growth in generation capacity is expected to continue to come from wind 
and solar resources. Battery capacity is also expected to grow substantially but is starting 
from a very low base. Batteries also have limited ability to store energy compared to the 
energy stored in fuels used by thermal generators. 
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The outcomes of recent policy changes, such as Proposition 7, remain to be seen, but ERCOT 
represents a large electricity market that is growing rapidly. The evolution of system capacity 
has struggled to keep pace, setting the stage for some very tangible concerns related to 
system stability and grid reliability. It also opens the door for opportunities to profitably 
grow dispatchable resource capacity. 

ERCOT System-Wide Concerns: A Question of Resource Adequacy 

The expected expansion of wind and solar generation in ERCOT owes to Texas’ resource 
endowment (land, wind, and sun), the ease of doing business in the state, and federal 
incentives that have been bolstered by recent legislation, such as the Inflation Reduction Act 
of 2022 (IRA). If load growth in ERCOT continues to be strong, as is projected, especially 
during peak periods, resource inadequacy could become more acute. Formerly arcane 
discussions about the social value of reliability or the value of lost load will become much 
more salient. Increased use of demand management tools, while important, may raise other 
controversies. More generally, reliability will need to be “priced” into the market through 
regulatory interventions and/or market rulemaking to ensure sufficient investment in 
dispatchable capacity. 

The largest source of flexible dispatchable generation capacity in ERCOT — combined-cycle 
natural gas generation — has not grown in recent years. Meanwhile, the fleet of single-cycle 
gas turbines has diminished as units have been retired. Low wholesale electricity prices, 
combined with increased ramping costs and reduced operating hours as non-dispatchable 
generation, when producing, displaces higher marginal cost plants, have negatively impacted 
profitability assessments of new dispatchable capacity. The resulting system lacks sufficient 
dispatchable generation capacity to serve as a backstop for intermittent resources.  

Backstop reliability service is analogous to an insurance policy. Like insurance, it will be 
provided only with an adequate risk premium. Higher average prices will be required to 
justify long-term investment in dispatchable resources as the risks associated with their 
revenue and cost streams increase. Box 1 highlights this insurance concept. 

As shown in Figure 5, the number of hours when loads exceed dispatchable capacity has 
increased, indicating the annual data in Figure 3 does not simply reflect peak demands on 
abnormal days. This generally corresponds with the frequency of Energy Emergency Alerts 
(EEAs) and Voluntary Conservation Notices issued by ERCOT. It also highlights the growing 
risk of continued load growth in ERCOT. 
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Figure 5 — Hours of Load in Excess of Dispatchable Capacity, 2010–23 

Source: ERCOT. Data compiled by authors. 

An emerging, ominous trend for system reliability is the retirement of dispatchable capacity. 
Over 6,500 MW of coal and natural gas were retired from 2018 to 22, most of which was 
sited close to demand centers. Today, over 36% of Texas’ operational thermal capacity is over 
40 years old, including more than 65% of existing coal capacity and 30% of existing natural 
gas capacity. Expected retirements and new interconnections translate to a supply-demand 
gap of roughly 30 GW to be filled by 2027, excluding future load growth. And even though 
system-wide capacity has increased and is expected to continue to increase, the growth has 
all been from wind and solar installations. 

Certainly, wind and solar often deliver well above their rated capacities, especially on days 
that are windier or sunnier than usual, but they also frequently deliver well below their 
rated capacities (Figures 6 and 7). Thus, the risk profile of the generation fleet is growing. 
Given government incentives for renewable energy, regulators and system operators must 
address the increasing risk of inadequate operational generation resources. Moreover, as 
indicated in Figure 8, relying on continued expansion of wind and solar on the grounds that 
they are complementary is not a panacea.  



13 

Figure 6 — Wind Generation in ERCOT, 15-Minute Intervals, Jan. 1, 2009–Nov. 30, 2023 

Source: ERCOT. Data compiled by authors. 
Note: “Expected” generation is included for illustrative purposes only. It is the regression results of the monthly averages over the entire 
sample and is consistent with an “average” wind generation outcome. “Nameplate” capacity data is not available in 15-minute increments, so 
it is depicted in six-month windows as the installed capacity at the end of the six-month period. 
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Figure 7 — Solar Generation in ERCOT, 15-Minute Intervals, July 1, 2011–Nov. 30, 2023 

Source: ERCOT. Data compiled by authors. 
Note: “Expected” generation is included for illustrative purposes only. It is the regression results of the monthly averages over the entire 
sample and is consistent with an “average” solar generation outcome. “Nameplate” capacity data is not available in 15-minute increments, so 
it is depicted in six-month windows as the installed capacity at the end of the six-month period. 
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Figure 8 — Wind Plus Solar Generation in ERCOT, 15-Minute Intervals, July 1, 2011–Nov. 30, 2023 

Source: ERCOT. Data compiled by authors. 
Note: “Expected” generation is included for illustrative purposes only. It is the regression results of the monthly averages over the entire 
sample and is consistent with an “average” wind plus solar generation outcome. “Nameplate” capacity data is not available in 15-minute 
increments, so it is depicted in six-month windows as the installed capacity at the end of the six-month period. 
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Importantly, the variation indicated in Figures 6-8 is independent of load at any given time 
because it is dictated by whether the wind is blowing, or the sun is shining. Variation in 
every other generation source is a function of dispatch, which is the call on those generation 
sources given the availability of other sources and their relative cost, given system load.  
Thus, variation in dispatchable generation is endogenous , or dependent on other variables in 
the electricity system, while variation in non-dispatchable generation is exogenous , or 
independent of other variables in the electricity system. Reliability requires sufficient 
endogeneity of system resources to optimize responsiveness.  

Figure 9 is constructed to reveal the mean-normalized distribution of generation for wind, 
solar, and wind plus solar. Mean-normalization divides the generation in each 15-minute 
interval by the monthly average generation within that same month. This normalizes the 
data against growth over time, as well as monthly seasonality in generation patterns, thus 
allowing a comparison independent of time. 

Figure 9 — Mean-Normalized Distributions of Wind, Solar, and Wind Plus Solar 

Source: ERCOT. Analysis done by authors. 

By construction, Figure 9 yields a series mean that is always equal to 1, while the standard 
deviations will reflect how much generation varies relative to its average for each month. For 
instance, the average generation from wind in July 2011 was 2,634 MW, with a maximum of 
5,578 MW and minimum of 63 MW. In November 2023, the average was 10,851 MW, with a 
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maximum of 24,597 MW and minimum of 361 MW. Hence, the mean-normalized values for 
average, maximum, and minimum in July 2011 were 1.000, 2.117, and 0.024, respectively, 
while for November 2023 the same values were 1.000, 2.267, and 0.033, respectively.17  

As Figure 9 reveals, the distribution of the mean-normalized data for wind plus solar is 
narrower than either wind or solar alone, indicating there is a reduction in variance around 
the monthly average when the two data series are combined. Adding solar to wind increases 
the number of observations that are closer to the mean, but the differences are minor. The 
standard deviation of the distribution of wind plus solar (= 0.51) is only marginally smaller 
than the standard deviation of wind alone (= 0.55). 

Moreover, a standard deviation that is roughly half the mean in a mean-normalized data 
series indicates substantial variation in the observed generation over time. This has 
implications for resource requirements to adequately ensure reliability. For instance, in 
November 2023, if system planning is based on an expected generation that is consistent with 
the indicated value in Figure 9, a fully insured system would need about 15 GW of 
dispatchable generation capacity available on standby in the event the combined wind plus 
solar generation fell to its minimum value that month. Note, this is independent of load, as it 
assumes that total capacity, based on expected performance, is sufficient to meet load in any 
given month. If this is not the case, then the overall capacity requirement would be higher. 

Because avoiding (i) catastrophic system failure is critical, (ii) power quality (frequency and 
voltage stability) is a prerequisite for commercial and industrial users, and (iii) assured supply 
is vital for the welfare of residential consumers, the recent emphasis in proposed long-term 
market design reforms from the PUCT has been on resource adequacy.18 Proposals over the 
past couple of years have included 

• higher penalties for nonperformance by ancillary service market participants,
• requiring market participants (from generators to local utilities) to secure backup

capacity if intermittent generators underperform,
• calls for on-site fuel storage for dispatchable generation capacity, and
• arguments for instituting a capacity market in ERCOT.

Note that in every case, the fundamental argument is rooted in concerns about system 
reliability and creating mechanisms to ensure adequate operational (dispatchable) capacity is 
available to meet system load requirements. Effectively, the effort has been focused on 
establishing an appropriate insurance premium to warrant resource adequacy (see Box 1 for a 
brief discussion of this concept). 
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Box 1 — A Role for Risk Premiums and Insurance in ERCOT 

A risk premium is commonly defined as the difference between the expected return on an asset with 
quantifiable risk and the lower expected return on the asset that would leave it equally attractive if 
it were risk-free. An asset’s risk premium in a given investment reflects the additional compensation 
over that of a risk-free investment that an investor needs to tolerate the risk. 

Risk premiums are often discussed as 
potential tools for correcting market 
distortions and providing price signals to 
market participants about a particular 
course of action, either through 
investment or operations, in various 
situations. This incentivizes risk-averse 
actors to internalize the costs of their 
actions. As indicated in the figure below, 
as the risk associated with a particular course of action rises, the risk premium also rises. This is at 
the core of how insurers price insurance policies on different activities, with riskier activities 
requiring higher premiums. To adequately warrant against undesirable outcomes, risk must be priced 
into the activity. 

In the Texas electricity market, risk premiums should capture the value of reliability to market 
participants. Prices needed to ensure resource adequacy and other services for reliability would 
incorporate these premiums. For instance, to the extent that wind variability introduces a reliability 
risk, an appropriate risk premium to account for this, along with support backup capability (which 
could be additional natural gas capacity, battery installations, demand-side management programs, 
etc.), is needed. This would compensate investors for providing the necessary capacity additions. 

In its role as regulatory overseer of ERCOT, the Texas Legislature has increased its focus in 
the past two sessions on legislation intended to ensure reliability. SB 3 (2021) required the 
PUCT to reform ERCOT market design to enhance reliability. In December 2021, the PUCT 
released its “Approval of Blueprint for Wholesale Electric Market Design and Directives to 
ERCOT.” Implementation of Phase I of the blueprint began in January 2022 and was focused 
on providing “enhancements to wholesale market mechanisms” to improve reliability. 

The primary goal of electricity market design is to leverage the incentives and price signals 
markets provide to minimize costs and ensure adequate operational capacity and flexibility to 
serve customers reliably. Of course, all actions taken at the state level must account for 
federal-level market interventions. Some recent relevant actions at the federal and state 
levels that will impact electricity market structure and reliability, in addition to state 
legislation previously discussed, include:  
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• U.S. Infrastructure Investment and Jobs Act of 2021 (IIJA). Includes a National
Electric Vehicle Infrastructure Formula Program and Discretionary Grant Program
for Charging and Fueling Infrastructure.

• U.S. Inflation Reduction Act of 2022 (IRA). Extends the business investment tax
credit through 2025, creates a clean electricity investment tax credit for energy
storage projects, and creates tax incentives to produce “green” hydrogen.

• Texas SB 2627. Establishes a Texas Energy Fund to provide up to $7.2 billion in
funding through loans and grants to incentivize up to 10 GW of new or upgraded
dispatchable generation.

• Texas HB 1500. Places several guardrails on the PUCT’s capability to establish and
implement a PCM, which, starting in 2027, requires interconnected facilities to
maintain output during peak load hours, instructs ERCOT to create Dispatchable
Reliability Reserve Service, and establishes a standard allowance to incentivize new
generation to site closer to load centers.

The IĲA could impact electricity demand, for example, by incentivizing greater 
electrification in the transportation sector. This means an even greater increase in load, 
which, without sufficient investment in generation capacity, will increase the risk of grid 
instability. The IRA also provides incentives that could increase electricity demand, such as 
for hydrogen and carbon capture, but it also extends and enhances incentives to expand 
renewable generation capacity as well as electricity storage capacity. While more renewable 
generation capacity could exacerbate emerging risks, increased energy storage could alleviate 
risks. Only time will tell which will dominate over the next few years. 

Both SB 2627 and HB 1500, combined with Proposition 7, could alleviate emerging risks, but 
their effectiveness will depend on the pace of expansion of dispatchable resources stimulated 
by these state-level regulatory interventions. Regional siting decisions and transmission 
constraints in ERCOT that ultimately dictate the price received for generation may limit the 
profitability of these capacity expansions, even with the new incentives.  

More generally, there is a powerful argument that electricity price should reflect the value of 
reliability in addition to short-run supply costs. This could motivate market designs that 
place greater value on dispatchability. Direct subsidies to dispatchable resources, such as loan 
guarantees, tax credits, or other incentives, are one approach. But such subsidies are difficult 
to set at the appropriate level or to adjust as conditions change, and they often succumb to 
special interest lobbying. An alternative is to create indirect subsidies to dispatchable 
resources that manifest through, for example, regulatory requirements that non-dispatchable 
resources must warrant firm supply to participate in the day-ahead or ancillary services 
markets. This might provide more flexibility in response to market conditions. In either case, 
the objective would be to internalize the value of reliability and resource adequacy.  
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ERCOT Subregional Concerns and LMP Signaling 

In addition to the system-wide issues facing ERCOT, some subregional issues also demand 
attention. Many of these are directly connected to transmission. The devil is in the details. 

To begin, the top nine most populated counties, totaling 16.8 million people, represent 56% 
of the state population.19 Accordingly, this is where load is highest. Dispatchable capacity, 
such as coal, natural gas, and nuclear, accounts for roughly 90% of the installed capacity 
within these counties. The remaining 10% of capacity consists mostly of solar. Wind is 
generally sited in more remote locations, where wind resources are better and land prices 
lower, given the required land footprint. This translates into significant distances between 
demand centers and renewable resources. Add in the substantial growth in wind capacity in 
recent years, and it is not surprising that ERCOT faces a well-recognized transmission 
challenge.  

A 2022 ERCOT report indicated transmission constraints for two route types: (1) exports 
away from renewable resource centers and (2) imports into demand centers.20 Another 
ERCOT study identified the need for new transfer pathways and long-distance transfer 
technologies beyond the typical 345-kV circuit line to improve export capability.21 
Transmission constraints for imports can be addressed by adding generation closer to demand 
centers. ERCOT’s latest estimate of capital costs for new units found that the overnight cost 
for all natural gas technologies is lower than any other technologies except for two-hour 
battery storage.22  

These considerations raise two interrelated questions critical for the future of regional 
stability on the ERCOT grid: (1) How should resources be sited and developed to avoid 
transmission constraints, and (2) what transmission upgrades or enhancements are needed to 
alleviate constraints, including how they should be financed, given transmission investments 
will affect resource siting choices? A first step toward understanding this is to identify where 
constraints are manifest. 

It is useful to disaggregate ERCOT into regions, as depicted in Figure 10, with the Texas 
Triangle previously referred to comprising most of the “DFW,” “Central,” and “Coast” 
regions in Figure 10. There are some key differences across market areas, so defined. As can 
be seen in Figure 11, the Texas Triangle has historically had the largest loads, although load 
in the “NW” region has recently overtaken load in the Central region. Load growth in NW 
corresponds to rapid increases in oil and gas production in the Permian Basin coupled with 
efforts to electrify upstream operations, a trend driven at least in part by environmental 
considerations.  
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Figure 10 — ERCOT Territory and Regional Characterization 

Note: Figure 10 is based on ERCOT weather zones (see https://www.ercot.com/news/mediakit/maps). 
For the analysis done herein, the North, West, and Far West zones are grouped into the “NW” region. 
The North Central and East zones are grouped into the “DFW” region, the South Central zone 
comprises “Central,” and the South and Coast zones are unchanged. 

Using the data for monthly averages of hourly loads in Figure 11, load has increased more 
than 266% from 2002–23 in NW. Load growth is second highest in the South region, where 
the increase was more than 70%. Central is not far behind, with a growth of 62%. In DFW, 
the highest load region, growth was slightly above 32%, while in Coast it was almost 53%.  

The embedded table in Figure 11 also reveals that regional peak loads and the hourly 
standard deviations of load have increased by a greater amount than regional average loads. 
The need to respond to greater peaks alongside increased variation at the regional level 
exacerbates the need for greater flexibility in grid resources at the system-wide level 
resulting from the growth of intermittent versus dispatchable resources. 

https://www.ercot.com/news/mediakit/maps
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Figure 11 — Load by Region, Monthly Averages of Hourly Loads, Jan. 1, 2002–Dec. 31, 2023 

Source: Hourly data retrieved from ERCOT. 
Note: Monthly averages of hourly data are graphed in Figure 12. The embedded table indicates the annual average, standard deviation, and 
peak load for 2002 and 2023 to illustrate the evolution of load.  
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Examination of LMPs across ERCOT helps to highlight the regional challenges faced within 
Texas. It should be noted, however, that LMPs, as currently calculated by ERCOT, differ 
geographically only because of transmission constraints. Normal marginal transmission losses 
are instead allocated to all users regardless of location. This tends to mask the full impact of 
transmission bottlenecks and siting decisions. System-wide efficiency is adversely affected 
because incentives for decision-makers to take those losses into account are lost.  

In 2018, the PUCT requested that ERCOT assess the expected benefits of including marginal 
transmission losses into the LMPs.23 There were several interesting outcomes of the 
subsequent analysis that centered on the marginal revenue implications for different plants 
sited in different locations. Notably, incorporating marginal losses into LMPs was found to 
increase unit revenue shortfalls, which is the difference between daily energy revenue and 
the operating costs of units committed to maintain local grid reliability. ERCOT indicated 
that this could “result in an increase in units being committed out of merit order so as to 
maintain local reliability and an increase in unit make-whole payments.” They further noted 
that an increase in unit start-up costs when LMPs included marginal transmission losses may 
be a possible explanation. This may be either because of “an increase in the number of unit 
starts and/or an increase in the number of starts of units with higher start-up costs.” 

ERCOT also noted that it is difficult to translate the changes in production costs and 
generator revenues into price changes for consumers. The main reason is that the change in 
LMPs would alter the price structures. Under the current system, average transmission losses 
are recovered by fixed charges for service. Under a marginal transmission loss system, the 
costs of the losses would become part of the variable charge per kWh. 

Although LMPs currently calculated by ERCOT do not faithfully reflect differences in costs 
of supply across locations, they nevertheless reveal information about transmission 
constraints. Since transmission is typically built to cope with peak loads, binding 
transmission constraints should be an unlikely occurrence when loads are far below peak. 
Nevertheless, line outages and other equipment problems or unusual distributions of demand 
or supply across the network could lead to some constraints. When load approaches system 
capacity, transmission constraints are likely to become ubiquitous. 

Binding Transmission Constraints 

We examined the distribution of LMPs across the approximately 16,700 electrical buses on 
the network in 44,681 successive observations (around 152 days of mostly five-minute 
intervals).24 Given our expectation that binding transmission constraints should be unlikely 
unless loads are near peak, we were surprised to find that they were present in almost 78% of 
the 44,681 five-minute intervals. Admittedly, the sample period covered the most recent 
2023 summer, but that binding constraints were present for such a large fraction of the time 
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indicates serious transmission capacity problems in the ERCOT network. This is reinforced 
by the finding that binding transmission constraints occur throughout the full range of loads, 
including some of the lowest ones in our sample. Evidently, there have been difficulties 
expanding transmission capacity to keep up with load growth in the network, as well as the 
expansion of supply sources that are distant from the main load centers, wind in particular. 
In fact, a strong tendency for wind generation to be higher in five-minute intervals when 
there is at least one binding transmission constraint is the most noticeable difference 
between the subsets with and without such constraints. 

Given how ERCOT calculates LMPs, the cross-sectional standard deviation in LMPs will be 
zero if no transmission constraints are binding (χ = 0) and positive otherwise (χ = 1). 
Statistical analysis of the resulting binary variable, χ, reveals that an increase in load that can 
be met entirely by thermal generation has a slight positive effect on the probability of 
encountering at least one binding transmission constraint. If the increase in load is met 
instead by an equal increase in solar generation, the likelihood that transmission capacity 
will be constrained is noticeably greater. The effect is largest if the increased load is met 
entirely by wind generation. 

Consistent with the purpose of higher physical response capability, additional physical 
responsive capability in the absence of any change in load tends to substantially reduce the 
likelihood of a binding transmission constraint. Over-forecasting load tends to lessen the 
likelihood of at least one binding transmission constraint. This may be because an excessive 
forecast leads to more generating capacity being in a state of readiness. The opposite error of 
under-forecasting load more strongly increases the chance of encountering a binding 
transmission constraint. A possible explanation is that low load forecasts lead to the “less 
than ideal” generators being active on the network. Consistent with the rapid growth in NW 
load identified earlier, forecasts of higher fractions of load coming from the West zone tend 
to increase the chance of encountering a binding transmission constraint. In other words, 
when demand rises at the end or supply rises at the beginning of an isolated or not-well-
connected line, there is a propensity for transmission capacity to become constrained.  

The market-clearing price of power in each five-minute interval, also called the “shadow 
price of power balance” by ERCOT, is a component of all the LMPs across the ERCOT 
system. It should depend on where the load intersects the supply stack. Since high loads also 
strain the transmission system, we found, unsurprisingly, that the price is on average 85% 
higher in intervals when at least one transmission constraint is binding. 

We also found that an increase in load fully met by thermal or wind generation raises the 
shadow price regardless of whether any transmission constraints bind. If the increase in load 
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is satisfied entirely by solar, however, the shadow price increases on average only when at 
least one transmission constraint is binding. 

We also found that increasing wind or solar, while backing out an equivalent amount of 
thermal generation, reduces the shadow price of power balance, regardless of whether any 
transmission constraints bind. Such an outcome would be consistent with the so-called 
“merit order effect.” The addition of zero (or, with subsidies, negative) marginal cost 
generation pushes the supply stack to the right and tends to lower equilibrium power prices. 
However, the estimated differences in the effects of marginal changes are all no larger than 
the estimated standard errors. Evidently, the merit order effect is quite weak in the current 
ERCOT system. 

Having more physical responsive capability (RC) available tends to reduce the shadow price 
of power balance regardless of whether any transmission constraints are binding. However, 
the effect is more than four times stronger when at least one transmission constraint is 
binding. This is consistent with the observation that having dispatchable generation 
resources close to load can substitute for inadequate transmission capacity. 

When at least one transmission constraint is binding, the components of the LMPs apart 
from the shadow price of power balance give us a measure of the severity of the binding 
constraints. Suppose a transmission link flowing power from Location A to Location B is 
operating at capacity. The LMPs at both A and B will be affected. The LMP at A will be 
reduced as a result of the constraint, while the LMP at B will be increased. These price 
changes send signals to potential investors in new generating plants and/or new loads (such 
as cryptocurrency mining) about where to best site new facilities, as well as where to build 
new or upgraded transmission capacity between A and B.  

The prices also send a signal, especially if the constraints bind only periodically, about where 
to site new storage facilities. The resulting lower prices at A disincentivize locating new 
generation, but incentivize locating new load sources, at A. The opposite is true of B. 
Similarly, if a private firm could build transmission capacity without needing to take account 
of its impact on the rest of the system, the arbitrage opportunity reflected in the price 
differential between A and B is the potential revenue source that could pay for the cost of the 
transmission investment.25 If the constraint is only present periodically, storage can be sited 
at B to take advantage of lower power prices when the constraint is nonbinding, and higher 
prices when the constraint is binding — i.e., buy low, sell high. 

The extent to which a binding transmission link between A and B affects the LMPs at A and 
B depends on what ERCOT calls “shift factors.” These reflect how increased net demand at 
the receiving Location B or increased net supply at the source, Location A, changes flow 
across that line from A to B. Intuitively, a location that is better connected to the rest of the 
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network will have a lower shift factor since it has many alternative locations to either send 
power to, or obtain power from, in addition to the single location at the other end of the 
constrained line.26 

Impact on LMPs 

Statistical analysis of the shadow prices of binding transmission constraints suggest, first, that 
binding transmission constraints tend to have greater negative than positive impacts on 
LMPs. The implication is that the shift factors on locations flowing power into constrained 
lines (called “source” locations) are larger than the shift factors on locations where power is 
flowing out of the same constrained lines (called “sink” locations). In turn, that implies that 
source locations tend to be less well-connected to the rest of the network than sink ones, 
which signals that the most severely congested lines tend to connect isolated, remote 
generators to locations that are much better connected to the rest of the network. 

A second observation is that magnitudes of the effects of exogenous factors on the LMPs 
increase greatly once load gets beyond around 72 GW (which is about 13 GW short of the 
2023 peak load for ERCOT). During those peak periods, there are many very large positive 
and negative LMPs, but the negative ones are generally about double the magnitudes of the 
positive ones. An increased system load exacerbates the effects of binding transmission 
constraints, especially for links connecting isolated, remote generators to the network, such 
as far-flung wind farms. Providing further incentives to increase the capacity of such 
generators would mean that they would add even less output to the network than their 
nameplate capacity and typical wind speeds in their location would imply. 

A more detailed statistical analysis was undertaken to relate the costs of binding transmission 
constraints to generation sources and physical responsive capability. Multiple sources of 
evidence revealed substantial differences between effects on the number of constrained links 
versus the severity of the constraints. The evidence suggested that the source ends of 
constrained links tend to be connected to solar or wind generation, but that wind tends to be 
much more seriously bottlenecked than solar. 

In summary, consistent with the observation of regional demand growth and regional 
capacity expansion across ERCOT, we find that LMP behavior reflects the discrepancy 
between the location of generation capacity and load. In particular, when transmission 
constraints emerge, upstream resources that are bottlenecked tend to see significant 
discounts, while downstream load centers that are constrained tend to see somewhat lower, 
but nevertheless substantial, premiums. Interestingly, the severely bottlenecked locations 
tend to be concentrated in South Texas, close to the Mexican border. More moderately 
constrained locations are in the Houston and Dallas metro areas. The constrained sinks tend 
to be concentrated in the central part of the state — in San Antonio, Austin, and surrounding 
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regions. In sum, this indicates a multipronged approach may be needed. Expanded 
transmission capacity from the South region may be warranted, but encouraging new 
generation or storage resources sited in the ERCOT regions that tend to see the highest loads 
— DFW, Central and Coast, in particular — may also be worthwhile.  

Final Remarks and Recommendations 

Electricity reliability and resource adequacy in ERCOT have been at the top of legislative, 
regulatory, and commercial agendas in Texas since Winter Storm Uri in February 2021. But 
Uri was the stress test that exposed issues that needed attention even in the absence of such 
extreme events. Texas has seen tremendous growth in wind and solar generation capacity 
over the past 20 years, and it is now No. 1 in the nation in terms of existing wind capacity 
and No. 1 in terms of planned capacity additions for wind and solar. Such aggressive growth 
of intermittent resources, while motivated by environmental goals, will compromise 
reliability if there is little-to-no concurrent addition of dispatchable forms of generation. 
Continued growth in system load and changes in its geographic distribution only exacerbate 
matters. 

In Texas, electrification of home heating is already significantly higher than the national 
average (61.5% versus 39.8%), and aspirations to electrify everything — including the 
continued electrification of oil and gas operations, cryptocurrency mining, adoption of EVs, 
expansion of CCS, and growth of the “green” hydrogen industry — will likely drive 
substantial additional load growth. As such, the issue of resource adequacy to ensure 
reliability must be tackled now, rather than later.  

An understanding of the evolution of ERCOT to now highlights why significant expansion of 
transmission into and out of the region is unlikely. The desire to avoid federal oversight of 
intrastate networks predates the creation of ERCOT by decades. While this leaves gains from 
trade with neighboring regions off the table, any commercial incentive to capture those gains 
has not been sufficient to alter course, and the future of reliability in ERCOT is likely to 
remain a function of what happens in ERCOT.  

The generation mix in ERCOT has changed considerably since 2000, and it has been tilted 
heavily toward wind and solar capacity, supported by robust subsidies and mandates. This 
has produced significant increases in generation from each resource, and since both resources 
are intermittent, it has also increased variability and unpredictability in overall supply. 
Therein lies the challenge. Grid stability is a function of resource adequacy that matches the 
temporal frequency of load. If resources cannot be made available on demand, the risk of grid 
failure increases. This means grid stability can only be warranted if there is sufficient 
dispatchable capacity available on standby. This cannot be baseload generation that is already 
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dedicated. Holding such capacity in reserve, however, is expensive because backing it down 
when renewable output is available increases the levelized cost of the backup supply. 

The outcomes of recent policy changes remain to be seen. But actions such as Texas SB 2627 
and HB 1500, combined with Proposition 7, have the potential to alleviate emerging risks. 
That stated, there remain financial risks for capacity expansion — even with the new 
incentives — that are connected to regional siting decisions and transmission constraints in 
ERCOT. Since profitability must be sufficiently high to justify allocating capital to capacity 
investments, transmission constraints can encumber investment, particularly when the new 
capacity will only run when wind and solar are not available. As such, there is a strong case 
that the electricity price determined in the wholesale market needs to reflect the value of 
reliability.  

ERCOT is also undergoing some significant changes on a regional basis. For example, 
regional peak loads have increased by a greater amount than regional average loads, and the 
variation in hourly load has also increased. This is occurring independently of growth in 
dispatchable resources, and it highlights an even greater need for flexibility in the generation 
mix as well as appropriate signals to have it optimally located to respond to higher peaks and 
larger variation.  

The combination of greater variability in both load and generation creates stresses on the 
grid that manifest in LMPs. Higher generation from wind, and to a lesser extent solar, 
resources tends to exacerbate transmission constraints at almost all times, but the 
consequences for LMPs are especially extreme during peaks. LMP behavior also reflects the 
discrepancy between the location of generation capacity and load. Resources that are 
upstream of transmission constraints tend to see significant discounts, while load that is 
downstream of transmission constraints tends to see significant premiums. The most severely 
bottlenecked locations tend to be concentrated in South Texas, while more moderately 
constrained locations are in the Houston and Dallas metro areas. Weaker constraints are 
evident near San Antonio, Austin, and surrounding regions. As a result, targeted investments 
in transmission and proper siting of future dispatchable generation and storage capacity 
could all play a significant role in ensuring reliability in ERCOT.  

In summary, opportunities to overcome system-wide concerns as well as subregional issues 
abound. There are significant opportunities to relieve current stresses on the grid caused by 
historical inadequate investment in dispatchable capacity and resource siting that has been 
geographically inconsistent with system load. As such, reliability can be enhanced with an 
adequate “insurance” policy, which can take many forms. 

• Investing in dispatchable forms of generation that can be called on when intermittent
resources are not available while load is high.
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• Investing in storage capacity where downstream constraints exist. Specifically,
locating storage capacity in utility areas and/or alongside industrial consumers can
present opportunities to reduce purchases from the grid during high-demand periods,
thereby lowering pressure on LMPs and allowing power to be redistributed.

• Siting longer-term storage capacity upstream of constraints, especially where
congestion occurs due to above-normal wind and solar generation. This effectively
acts like production area storage in natural gas markets, allowing a “smoothing” of
sales from intermittent resources and promoting a more efficient use of transmission
capacity.

• Expanding transmission capacity to alleviate existing constraints. However, the
frequency and severity of those constraints matter for the economic desirability of the
transmission capacity investment. Capacity that is only needed at times of stress and is
heavily underutilized at all other times can be wasteful of scarce investment capital.

• Locating future dispatchable generation capacity closer to load centers to avoid
bottlenecks and reduce transmission losses, thereby aiding in its profitability.

• Rescinding policies or decisions that tend to, as an unintended consequence, magnify
reliability problems.

Given the abundance of options for alleviating concerns about resource adequacy and grid 
stability, it is likely that some combination of all of them would yield the lowest cost 
outcome. In the end, policy and regulation will play a key role in dictating which 
opportunities will be most attractive and executable.  

Increased operational, dispatchable, redundant capacity on the electric grid is a necessary 
condition for continued growth in intermittent generation resources, but what form that 
capacity takes — batteries, natural gas, geothermal, etc. — is an open question that investor 
returns will ultimately determine. Given the abundance of opportunities that exist in Texas, 
it may be that a portfolio approach (including dispatchable generation capacity, demand 
response, conservation, efficiency in end use, distributed generation, etc.) that seeks the 
lowest cost outcomes is the best approach for expanding reliability in the long run. 

To date in ERCOT, natural gas has been the workhorse of dispatchable redundancy. But 
longer-term innovations and investment in sources such as small modular nuclear and 
micronuclear capabilities, grid-scale battery capacity, and battery capacity strategically 
located in utility service areas could change this. It also should be recognized, however, that 
continued expansion of renewables makes some of these options more expensive by reducing 
the capacity factor of the backup capacity and increasing ramping costs. To achieve the most 
flexible path forward, policies that seek to enhance reliability should be agnostic to 
technology options. 
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Currently, the value of reliability is not adequately priced into the electric power market. 
Furthermore, while environmental concerns are cited as the motivation for subsidizing and 
mandating renewable generation, a fundamental principle of environmental economics is 
that mandating particular technologies to reduce a negative externality is rarely the most 
efficient approach. It is far better to internalize the externality via technology-neutral 
emission taxes and let market actors decide as much as possible the best way to respond.  

The current policy setting is even more problematic in that it attempts to address the 
environmental externality while ignoring the reliability externality. This leads to incentives 
to address one issue, but not the other. In turn, ERCOT has seen significant expansion of 
intermittent renewable generation capacity, but not the needed balancing service that 
dispatchable generation provides. Reliability problems are the unintended consequence. 
System reliability is essential to enabling a functional electricity market and the enormous 
value it provides in a modern economy and society. Pricing reforms to achieve reliability 
must be a priority. 

No market structure is absent risks; there will always be unexpected incidents and low-
probability events that can compromise any system. But allowing structural risks to 
reliability is unacceptable. Therefore, appropriate market design and sufficient regulatory 
oversight is critical. This can involve market structures that ensure sufficient backup 
capacity, or adequate penalties for underperformance by generators under specific 
obligations. In the end, resource adequacy and reliability are in the best interests of all 
market participants, producers and consumers alike, as they establish a platform for long-
term growth. Identifying investment opportunities to provide reliability is paramount, and 
ERCOT has a substantial portfolio of options.  
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Appendix A. Mean-Normalized Wind, Solar, and Wind plus Solar Generation 

Figure A1 — Mean-Normalized Wind Generation 

Source: Authors. 

Figure A2 — Mean-Normalized Solar Generation 

Source: Authors. 
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Figure A3 — Mean-Normalized Wind Plus Solar Generation 

Source: Authors. 

Appendix B. LMP Analysis 

ERCOT calculates what it designates as locational marginal prices (LMPs) every five minutes 
and at occasional times in between the five-minute intervals when load is close to capacity 
and prices are at their upper bounds. At the most disaggregated level, they calculate LMPs 
for thousands of electrical buses on the network. These are then aggregated into hundreds of 
“settlement point” prices. For determining actual wholesale market payments to generators 
from distributors and other buyers in the wholesale market, the settlement point prices are 
aggregated temporally into 15-minute intervals. Our goal is to assess the economic role 
played by these LMPs. To do so, we also want to understand how the prices respond to 
variables affecting electricity supply and demand. 

The LMPs calculated by ERCOT are “designated” as locational marginal prices, since they are 
not marginal prices as an economist would understand the term. The marginal price at a 
given location should reflect the marginal cost to the system of meeting a marginal increase 
in demand at that location, or the marginal value to the system of a marginal increase in 
supply at that location. In general, marginal changes at one location impact all other 
locations on the network as generation levels, loads, and flows adjust in response. From the 
perspective of the transmission system, a set of genuine LMPs should reflect marginal 
transmission losses. They should also reflect the shadow value of transmission constraints. 
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First, consider the case where there are no transmission capacity constraints. Suppose A and 
B are two electrical buses on the network with power flowing from A to B. The LMP at A 
(the source) should equal the LMP at B (the sink) less the marginal transmission loss between 
A and B. An increase in supply or decrease in demand at B, or a decrease in supply or 
increase in demand at A, would reduce the need to transmit power from A to B. This would 
in turn reduce the transmission loss. If power flows from A to B most of the time, the pricing 
differential would incentivize locational decisions that would tend to reduce transmission 
losses over time. 

By contrast, the LMPs calculated by ERCOT give a single price at all electrical buses on the 
network when there are no transmission capacity constraints. In effect, the transmission 
losses throughout the network are “socialized” and allocated to all users regardless of 
location. Incentives for decision-makers to take those losses into account are thereby lost. 

When each transmission line has a maximum capacity, the optimized load flow problem 
(used to solve for the cost-minimizing generation levels and transmission flows needed to 
satisfy a given magnitude and geographic distribution of loads) needs to include these 
capacity constraints with accompanying Lagrange multipliers. 

If a particular transmission constraint is not binding, the corresponding multiplier is zero. If 
the constraint binds, however, the multiplier becomes positive. The LMP of increasing net 
demand at the sink should increase by the value of the multiplier on that link times a “shift 
factor.” The latter reflects how increased net demand at the sink changes flow across the 
constrained link.27 Conversely, the LMP of increasing net supply at the source should 
decrease by the value of the multiplier on the constrained link times a different shift factor. 
Intuitively, a bus that is better connected to the rest of the network will have a lower shift 
factor, since it has many alternative buses to either send power to or obtain power from than 
the single bus at the other end of the constrained line. 

In principle, adjusting market prices to account for congestion incentivizes wholesale market 
participants to change their behavior in a way that helps ERCOT manage network 
congestion. In addition, positive Lagrange multipliers signal the value of expanding the 
capacity of the transmission link. When capacity is scarce, its value increases. For it to be 
worthwhile to incur the up-front costs of increasing the capacity of a transmission link, the 
cost of doing so needs to be less than the expected discounted value of the Lagrange 
multipliers (or value of the transmission link) over the life of the investment. 

The LMPs currently calculated by ERCOT are based only on the Lagrange multipliers on 
transmission links that are constraining flows. They do not account for marginal transmission 
losses. Moreover, ERCOT caps the transmission constraint multipliers at $4500/MW for 345-
kilovolt (kV) lines, $3500/MW for 138-kV lines, and $2800/MW for 69-kV lines. The current 
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protocol also caps the shadow price of power balance at $5000/MW. These price caps imply 
that the short-run scheduling of generation to meet the pattern of loads will not yield 
minimum cost supply when any of the caps are binding. In the longer run, price caps also 
give incorrect incentives for the siting of generation, major loads, and transmission line 
upgrades. 

In 2018, the Public Utilities Commission of Texas (PUCT) asked ERCOT to assess the 
expected benefits of including marginal transmission losses in LMPs. ERCOT used the Uplan 
Network Power Model to assess cost-minimizing dispatch to meet a specified level and 
pattern of load on the system while respecting various physical and operational constraints 
on system operation. They use the same approach to assess the need for transmission 
upgrades. The analysis allowed for three different natural gas prices based on the Energy 
Information Agency’s 2018 Annual Energy Outlook: a low price of $2.55 per million British 
thermal units (MMBTU), a medium price of $3.55/MMBTU, and a high price of 
$3.96/MMBTU. 

Including marginal transmission losses in LMPs changed production costs (which were 
defined to be the sum of fuel costs, variable operations, and maintenance costs), and unit 
start-up costs. In the low and medium gas price cases, production costs fell after including 
marginal transmission losses in LMPs. The primary reason was that the resulting shift in the 
location of active generators reduced the amount of energy required to serve a given load. In 
turn, the reduced fuel use was mainly the result of reduced transmission losses. ERCOT 
suggested that the slight rise in production costs in the high gas price case resulted from 
increased generation from coal-fired generators that are more remote from major loads than 
the gas-fired units they displaced. However, even in the high gas price case, total annual 
generation was lower when LMPs included marginal transmission losses. 

ERCOT also found that annual generator revenues from energy sales declined when LMPs 
included marginal transmission losses. The reductions increased with the gas price. However, 
the revenue changes were not uniform across the four zones in ERCOT. The largest increases 
were in the Houston zone, followed by the South zone. The West zone would incur 
moderate losses under all three gas price scenarios, while the declines in North zone 
generator revenues from energy sales would be larger in magnitude than the gains in the 
Houston zone. The model output showed no change in wind generation (curtailments did 
not change), while thermal units lost revenue due to price changes and output reductions.  

ERCOT noted that it is difficult to translate the changes in production costs and generator 
revenues into price changes for consumers. The main reason is that the change in LMP prices 
would alter the structure of prices. Under the current system, average transmission losses are 
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recovered by fixed charges for service. Under a marginal transmission loss system, the costs 
of the losses would become part of the variable charge per kilowatt-hour (kWh). 

Understanding When Transmission Constraints Are More Likely to Bind 

To examine some of the factors influencing the LMPs, we obtained 44,681 successive 
observations (around 152 days of mostly  five-minute intervals) of LMPs for the 
approximately16,700 electrical buses on the network from July 6, 2023, to Dec. 5, 2023.28 
Binding transmission capacity constraints were absent in about 22% of these five-minute 
intervals. Given how ERCOT calculates LMPs, all the LMPs in those intervals are identical, 
and the cross-sectional standard deviation in LMPs, σ, is zero. To investigate the causes of 
transmission constraints, we defined an indicator variable, χ = 0 for σ = 0 and χ = 1 for σ > 0, 
and estimated models with χ as the dependent variable. To understand factors affecting the 
severity of constraints, we examined models of the cross-sectional distribution of LMPs in 
the 78% of five-minute intervals where σ > 0. 

As potential explanatory variables, we obtained load, forecast load, physical response 
capability, and wind and solar generation data for each five-minute interval in the 152-day 
sample period. To limit the possibility of reverse causation from the calculated prices to the 
explanatory variables, we ensured that all data measured in the explanatory variables 
predated the observed LMPs. Regarding load, physical response capability, and wind and 
solar generation, we used data from the five-minute interval closest to, but preceding, the 
time when the LMPs were measured.  

Since transmission links are built to cope with peak loads, binding transmission constraints 
should be unlikely when loads are far below peak. Nevertheless, line outages and other 
equipment problems, or unusual distributions of demand or supply across the network, could 
strain some links. Transmission constraints are likely to become much more prevalent when 
load approaches system capacity. Furthermore, the shadow price associated with each 
binding constraint will increase with load. 

While it is common to assume that load is exogenous to real-time price, some ERCOT 
customers have demand-side management contracts that allow their demand to be curtailed 
at short notice. So far as we know, these curtailments do not respond directly to price. 
However, circumstances where demand curtailments are typically utilized, such as when the 
operating reserve margins cross certain thresholds, are likely to be correlated with price. 
Furthermore, some large industrial customers may be able to moderate demand in response 
to real-time settlement point prices. The latter are averages of about 20 bus LMPs — albeit 
ones that are likely geographically concentrated and therefore highly positively correlated.29 
It would seem implausible, however, that load during a five-minute interval could respond to 
LMPs calculated after the end of that interval. Furthermore, customers regularly 
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experiencing transmission constraints can hedge the expected costs using so-called 
congestion revenue rights (CRR). These are either obligations or options tied to a 
transmission link. In the case of an obligation, the holder receives hourly revenue equal to 
the MWh amount of CRR owned times the difference between the sink and source average 
hourly LMPs on the link. In the case of an option, the holder receives the maximum of the 
obligation amount and zero. CRR ownership should make load more sensitive to the average 
than to the short-run fluctuations in LMPs. 

Forecast loads might also affect transmission flows by increasing the amount or location of 
generating capacity scheduled to be available when forecast loads are high. The way we use 
the load forecasts requires more explanation. The forecasts pertain to loads expected over an 
entire hour, but for each hour, two forecasts are made approximately an hour apart: a 
preliminary forecast and then a forecast that is updated later. In addition, the forecasts 
include separate allocations of load to four zones — Houston, South (excluding Houston), 
North, and West. They also include the times that the forecasts were published.  

It may be easiest to explain the procedure used to construct expected loads with an example. 
Suppose we have a set of LMPs calculated at 11:18:10 am. We then find the forecast for the 
11 am-to-noon hour of that day that is published closest to, but still precedes, 11:18:10 am. 
We also find the forecast for the noon-to-1 pm hour that is published closest to, but still 
precedes, 11:18:10 am. We then calculate a weight, ω = (18*60 +10)/3600, representing the 
fraction of seconds within the hourly interval that has elapsed between 11 am and when the 
LMPs were calculated. The expected load corresponding to those LMPs and the expected 
fractions of load occurring in each zone are then calculated as w times the chosen 11 am-to-
noon hour forecast plus (1–ω) times the chosen noon-to-1 pm hour forecast. 

Even though the forecasts we use are published at least 30 or 90 minutes before the LMPs are 
calculated, the correlation between load and expected load is quite high. A regression of load 
against expected load yields a coefficient on the latter of 1.00041 with a standard error of 
0.00052 and an R2 of 0.9880. Thus, we do not include both the actual and expected load in 
the regressions. However, the difference between the forecast and the actual load could 
measure stress on the system. The effects of the actual exceeding the forecast load could 
differ from the effects of the forecast exceeding the actual. Hence, we defined two variables 
(both greater than or equal to zero) measuring the size of the forecast errors in each case: 

{ }max  , 0LFE load expected load= −  and { }max  , 0HFE expected load load= − . 

The expected zonal loads included in the analysis, calculated using the same weight w, are 
the proportions Hou = Houston load/expected load, Nth = north zone load/expected load, and 
Sth = south zone load/expected load (the fraction of load in the West zone is omitted). 
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The physical responsive capability, denoted RC, should allow ERCOT to limit the negative 
effects of emergencies or unexpectedly large loads. ERCOT defines physical responsive 
capability as “the generation and load resources that are available to respond quickly to 
system events in case of sudden changes, such as an unexpected outage at a large generating 
unit.” ERCOT may attempt to schedule more responsive capability as the system approaches 
capacity and more constraints bind. However, the time series for RC is relatively smooth 
compared to load and especially compared to the average of the LMPs. Most importantly, it is 
difficult to see how RC for a given five-minute interval would be endogenous to the LMPs 
calculated beyond the end of that interval. 

The amounts of wind (wind) and solar (solar ) generation could influence the likelihood of 
binding transmission constraints for at least two reasons. On the one hand, low output from 
these uncontrollable sources could impose more stress by requiring more thermal generation 
to compensate. These marginal thermal resources are likely to have higher marginal costs but 
may also be sited in different locations compared to inframarginal dispatchable capacity. We 
also include total thermal generation (thermal) as an explanatory variable to capture this 
effect.30 

Changes in wind and solar generation would also affect the locations of active generators. 
While many conventional plants have been located relatively close to major loads, wind and 
solar plants are located where the natural resources are more readily available and thus tend 
to be much more widely dispersed. Moreover, the existing transmission system was 
developed largely to accommodate the locations of conventional plants relative to major 
loads. The different locations of wind and solar plants compared to conventional plants may 
have required the construction of new, or upgrade of existing, transmission lines. Lags in 
these responses could cause more transmission constraints to bind when wind and solar 
output is relatively high.  

Most of the time, wind and solar generation depends on weather conditions and is exogenous 
to what is happening in the electricity market, including the market price. However, binding 
transmission constraints could require output from these generators to be curtailed. 
Nevertheless, curtailment decisions during a particular five-minute interval are unlikely to 
be affected by LMPs calculated beyond the end of that interval. 

Table B1 presents the ranges, means, and standard deviations of the explanatory variables. 
Table B2 gives the results for the logit model with c as the dependent variable. Robust 
estimates of the standard errors were used to allow for heteroskedasticity and potential serial 
correlation in the errors. The odds ratios in Table B2 measure the effect of a “1 unit” change 
in the relevant explanatory variable on p/(1–p), where p is the probability that σ > 0. 
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Table B1 — Moments of Explanatory Variables Included in the Logit 

Minimum Maximum Mean Standard Deviation 
load (in GW) 34.7320 85.6120 56.4221 13.1832 

thermal (in GW) 14.9200 68.3970 40.7786 12.1222 
wind (in GW) 0.3587 25.3709 11.0630 5.7422 
solar (in GW) 0 13.7884 4.1816 5.0630 

RC (in GW) 2.1367 13.4731 7.4259 1.4949 
FEL (in GW) 0 7.3960 0.6255 0.8674 
FEH (in GW) 0 6.0220 0.5029 0.8401 

Hou 0.2039 0.3084 0.2578 0.0111 
Nth 0.2642 0.4106 0.3346 0.0244 
Sth 0.2258 0.3315 0.2620 0.0118 

Source: Authors. 

We can use several criteria to examine the adequacy of the logit model. If we define D = 1 
when the predicted probability p ≥ 0.5 and D = 0 when the predicted p < 0.5, then the 
correspondence between D and χ is as given in Table B3. Overall, 77.81% of outcomes were 
correctly classified. The percentages in parentheses in each cell are (column percentage, and 
row percentage). These indicate that the logit model has substantial difficulty correctly 
predicting when σ = 0.  

Table B2 — Logit for χ as Dependent Variable 

Variable 
Estimated 
Coefficient 

Robust 
Std Err 

p-value
H0: coef = 0 

Implied Odds 
Ratio 

load 0.4324 0.0315 0.000 1.5410 
thermal -0.3536 0.0325 0.000 0.7021 

wind -0.2046 0.0316 0.000 0.8149 
solar -0.2860 0.0318 0.000 0.7512 

RC -0.2295 0.0106 0.000 0.7949 
FEL 0.1881 0.0221 0.000 1.2069 
FEH -0.0231 0.0172 0.180 0.9772 
Hou -58.1238 2.1638 0.000 5.72E-26 
Nth -51.0310 2.1139 0.000 6.88E-23 
Sth -21.7309 2.2784 0.000 3.65E-10 

constant 34.3241 1.4152 0.000 8.07E+14 
Source: Authors. 
Note: H0: All coefficients are zero, 2

10 5524.29χ = , pseudo-R2 = 0.1231.

There is other evidence that the logit model is inadequate. Estimating a new logit model with 
the linear predicted value from Table B1, 𝑋𝑋�, and its square, 𝑋𝑋�2, as explanatory variables yield 
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an estimated coefficient on 𝑋𝑋� of 0.3856, with a standard error of 0.0346. This implies that the 
original model has explanatory power. However, the estimated coefficient on 𝑋𝑋�2 of 0.2228 
has a standard error of 0.0151. This suggests that the model is not correctly specified. Adding 
squared and cross-product terms in variables ameliorated, but did not correct, the problem.  

Table B3 — Predicted and Actual Instances when σ > 0 

χ = 1 χ = 0 Totals 
D = 1 33,351 (95.84%, 79.75%) 8,468 (85.68%, 20.25%) 41,819 
D = 0 1,447 (4.16%, 50.56%) 1,415 (14.32%, 49.44%) 2,862 

34,798 9,883 44,681 
Source: Authors. 

Estimating a probit model instead of a logit slightly reduced the statistical significance of the 
coefficient on 𝑋𝑋�2, but the hypothesis that the coefficient is zero was still rejected at a level 
better than 1%. In the probit model, the probability that χ = 1 is 
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Table B4 gives maximum likelihood estimates of the heteroskedastic probit model, allowing 
the variance to depend on load, thermal, RC, wind, solar and the forecast errors. To test the 
specification, we again estimate a probit model with the linear predicted value from Table 
B4, 𝑋𝑋�, and its square, 𝑋𝑋�2, as explanatory variables, using the same model for the variance. 
The estimated coefficient on 𝑋𝑋� is now 1.1437, with a standard error of 0.1419. The estimated 
coefficient on 𝑋𝑋�2 becomes -0.5629, with a standard error of 0.3451, which is not statistically 
significantly different from zero at the 10% level. In addition, the estimated coefficients in 
the variance equation apart from those on RC and FEL change by less than 1%.31 We 
conclude that the model in Table B4 is the preferred specification. 
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Table B4 — Heteroskedastic Probit for χ as Dependent Variable 

Variable 
Estimated 
Coefficient Robust Std Err 

p-value
H0: coef = 0 

load -0.0035 0.0043 0.416 
thermal 0.0095 0.0054 0.077 

wind 0.0195 0.0067 0.004 
solar 0.0124 0.0048 0.010 

RC -0.0200 0.0026 0.000 
FEL 0.0121 0.0054 0.026 
FEH -0.0028 0.0013 0.031 
Hou -4.7628 0.9910 0.000 
Nth -4.6277 0.9989 0.000 
Sth -2.6240 0.5951 0.000 

constant 3.2650 0.6742 0.000 
lnσ coefficients: 

load -0.4188 0.0387 0.000 
thermal 0.4045 0.0399 0.000 

wind 0.3512 0.0390 0.000 
solar 0.3604 0.0373 0.000 

RC -0.0208 0.0203 0.306 
FEL -0.0559 0.0476 0.241 
FEH -0.1622 0.0187 0.000 

Source: Authors. 
Note: H0: All coefficients are zero; mean model, 2

10 117.44χ = , and variance model, 2

7 874.60χ = . 

The estimated coefficients on load should be evaluated in concert with those on thermal, 
wind, and solar. As previously mentioned, while thermal plus wind plus solar generation 
does not equal total load, the difference is usually less than 5% of ERCOT load. Hence, 
changes in load are largely matched by changes in some combination of thermal, wind, and 
solar.  

The estimated coefficients imply that an increase in load that can be met entirely by thermal 
generation, holding reserve capacity and the other variables fixed, has a slight positive effect 
on the probability of encountering at least one binding transmission constraint. By contrast, 
an increase in load that is met by an equal increase in solar generation has a larger impact on 
the likelihood that transmission capacity will be constrained. The effect is largest if the 
increased load is met entirely by wind generation. 

Consistent with the purpose of higher physical response capability, additional physical 
responsive capability (RC) in the absence of any change in load tends to substantially reduce 
the likelihood of a binding transmission constraint. Another implication of the relatively 
large coefficient on RC, however, is that an increase in load that is met by a reduction in RC, 
while thermal, wind, and solar are held constant, has an even larger impact on the likelihood 
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of encountering binding transmission constraints than when increased wind generation 
supplies the higher load. 

Over-forecasting load (FEH > 0) tends to lessen the likelihood of at least one binding 
transmission constraint, while under-forecasting it (FEL > 0) more strongly increases the 
chance of encountering a binding transmission constraint. A possible explanation is that 
incorrect forecasts lead to the “less than ideal” generators being active on the network.  

Forecasts of higher fractions of load in the Houston, North, and South zones tend to reduce 
the likelihood of binding transmission constraints. Forecasting a higher fraction of load in 
the West zone (the omitted category) thus tends to increase it. 

The model in Table B4 also has implications for the variability of the underlying latent 
variable determining whether transmission constraints bind. An increase in load matched by 
an increase in thermal, wind, or solar generation tends to reduce variance, as does an 
increase in physical response capability and any load forecast error. From the formula for 
Pr(χ = 1) in the heteroskedastic model, any such reductions in the variance tend to increase 
the probability that at least one transmission constraint will bind. 

Determinants of the Shadow Price of Power Balance 

When transmission constraints are not binding, all the LMPs equal the market-clearing 
power price in each interval, which is called the “shadow price of power balance” by ERCOT 
and denoted λ. In practice, λ is the Lagrange multiplier on the power balance constraint 
resulting from the solution to a security-constrained economic dispatch (SCED) algorithm. 
The inputs to the algorithm are the prevailing level and pattern of load on the system and the 
supply schedules submitted by producers. The SCED solves for the least-cost dispatch of 
resources to meet the loads while respecting various physical and operational constraints. 
The most important physical constraints for our purposes are the configurations and 
capacities of the various transmission links. Satisfying the constraints may require units to be 
committed out of merit order as determined by the submitted supply schedules.  

When at least one transmission constraint binds, the value of λ in each period is still a 
component of all the LMPs. However, an additional shadow price is generated for each 
capacity-constrained transmission link. As mentioned in the introduction of this report, 
these additional prices affect the LMPs at both ends of a constrained link. The shadow price 
times a shift factor is subtracted from the bus flowing power into the constrained link, while 
the shadow price times a (usually different) shift factor is added to the LMP at the bus 
receiving power flowing out of the constrained link. It follows that the added components 
reflecting transmission constraints will generally differ across links. In addition, the LMPs at 
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all buses on links that are not congested equal λ. We thus can identify λt with the modal 
LMP at t . 

Table B5 gives some summary statistics for the distributions of λ from periods when χ = 0 
versus periods when χ = 1. Negative values of λ can occur only when a generator is willing to 
pay to be allowed to supply more power. This can happen when renewable generators 
receive a production subsidy and are willing to pay up to the amount of the subsidy to avoid 
curtailment. It can also happen, for example, with nuclear plants, when ramping costs are 
high and the generator is willing to pay to avoid changing output. In these cases, the lowest 
horizontal segments in the submitted supply schedules are at negative prices. While that is a 
necessary condition for a negative value of λ, it is not sufficient. To obtain λ < 0, a generator 
submitting a supply schedule with a negative price must be the marginal generator actively 
contributing output to the network. The first column of Table B5 shows that, in our sample, 
such situations only occur when one or more transmission constraints are simultaneously 
binding.  

Table B5 — Summary Statistics for the Distribution of λ as a Function of χ 

Statistic χ = 0 (N = 9,883) χ = 1 (N = 34,798) 
Minimum 0 -16.65

1% 10.51 0 
5% 14.60 12.32 

10% 16.23 15.77 
25% 18.87 20.29 
50% 22.48 25.32 
75% 27.27 37.69 
90% 43.01 75.53 
95% 75.00 164.63 
99% 676.66 2378.51 

Maximum 5000 5202.27 
Mean 53.33 98.61 

Std Dev 294.55 453.44 
Skewness 14.47 8.70 

Kurtosis 226.24 84.25 
Source: Authors. 

More generally, the distribution of λ in periods when χ = 1 is less positively skewed and has a 
greater proportion of values of λ < 16. Nevertheless, there are also more periods with λ > 20 
when χ = 1, and the mean and median values of λ are higher in the sample with χ = 1. The 
standard deviation of λ also is higher when χ = 1. Thus, periods with at least one binding 
transmission constraint (χ = 1) tend also to be periods where load presses against the 
available generation capacity, so λ is high. 
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We turned to a regression model to understand the key determinants of λ. As already noted, 
λ is the solution from the SCED algorithm for the Lagrange multiplier on the power balance 
constraint. In a least-cost dispatch without any physical and operational constraints, λ should 
match the bid to supply incremental power from the marginal generator, that is, the active 
supplier where the load intersects the supply stack. However, the various constraints will 
modify this relationship. Thus, λ is likely to be a nonlinear function of the exogenous 
variables affecting supply and demand for power. From Table B5, the skewness (the third 
moment about the mean divided by the standard deviation cubed) and kurtosis (the fourth 
moment about the mean divided by the variance squared) measures of the distributions of 
λ imply that they are positively skewed, have very “fat” tails, and are far from normal. 

With these considerations in mind, we used a local-linear nonparametric kernel regression to 
relate λ to the first five explanatory variables in Table B1. We reduced the number of 
potential explanatory variables because kernel regression is very computationally intensive. 
In addition, the first five variables relate to the current demand and supply factors impinging 
on the system. The remaining variables in Table B1 relate primarily to the forecasts of load, 
which should be less relevant to determining the current solution to the SCED algorithm. 
Their main impact would be indirect in that they would influence the generating resources 
scheduled to be operational prior to the period in question. 

Figure B1 shows scatter plots of thermal, wind, solar , and RC against load for the 34,798 
intervals when χ = 1. These illustrate a tendency for wind to be lower when load is higher, 
while the opposite is true for solar . A decline in RC with load is also evident. The latter 
suggests that generating plants that provide physical responsive capability when load is lower 
are called on for normal supply at times when load is higher.  

The scatter plots also reveal many “relatively straight or wiggly lines.” These are subsets of 
successive intervals where the variables appear to be closely related. This may reflect a 
tendency for changes in weather that affect load (especially ambient temperatures) to be 
correlated with changes that affect output from wind (wind velocity) or solar (cloudiness or 
time of day) generators. Thermal generation would then also be correlated with load as 
dispatchable generators need to ramp up and down to accommodate the fluctuations in 
renewable output. 
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Figure B1 — Scatter Plots of the Kernel Regression Explanatory Variables 

Source: Authors. 
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Table B6 gives moments of the explanatory variables as a function of χ. The upper half 
relates to intervals where there are no binding transmission constraints; the bottom half 
relates to intervals where there is instead at least one such constraint. 

Table B6 — Moments of Explanatory Variables as a Function of χ 

Statistic load thermal wind solar RC 
χ = 0 

Minimum 34.861 19.6408 0.3587 0 4.2583 
1% 36.929 22.1411 0.7049 0 4.9716 
5% 39.892 26.1429 1.9265 0.0001 5.4867 

10% 42.227 28.4092 2.7873 0.0001 5.7802 
25% 45.909 33.3759 4.7938 0.0002 6.4048 
50% 51.96 39.1043 8.1391 0.1875 7.4780 
75% 58.888 46.1316 12.6731 8.8741 8.7139 
90% 68.272 53.5996 15.7671 11.9558 9.867 
95% 74.16 59.688 16.972 12.6455 10.4321 
99% 78.331 65.2288 19.2071 13.2354 11.4115 

Maximum 84.276 68.0718 21.8032 13.6531 13.4731 
Mean 53.4423 40.2236 8.7887 4.0609 7.6560 

Std Dev 9.9183 9.6909 4.8620 4.8790 1.5586 
Skewness 0.7186 0.5340 0.3231 0.6464 0.5071 

Kurtosis 2.9994 2.9611 2.0608 1.7492 2.8111 
χ = 1 

Minimum 34.732 14.92 0.3641 0 2.1367 
1% 36.33 17.6663 1.2605 0 4.9791 
5% 38.73 21.6439 2.7024 0 5.5330 

10% 41.373 24.6661 4.1051 0 5.7998 
25% 45.162 31.352 6.8765 0.0002 6.2596 
50% 54.7675 39.0644 11.48 0.1330 7.0071 
75% 69.106 51.6169 16.2798 9.8181 8.3009 
90% 78.431 59.6295 19.8772 12.2597 9.4341 
95% 81.719 61.9797 21.3166 12.8002 10.0893 
99% 84.259 65.4311 23.3493 13.3056 11.6566 

Maximum 85.612 68.397 25.3709 13.7884 13.3637 
Mean 57.2684 40.9362 11.7089 4.2159 7.3606 

Std Dev 13.8558 12.7241 5.8085 5.1136 1.4698 
Skewness 0.4014 0.1923 0 .1283 0.6296 0.7977 

Kurtosis 1.9240 2.0464 2.0555 1.6548 3.4618 
Source: Authors. 

The moments in Table B6 show that intervals where at least one transmission constraint is 
binding tend to be associated with more extreme high values of load, although the lower 
values of load are distributed similarly in the two subsets. In the case of thermal, the 
distributions across the two subsets are more similar for high values than low ones. In other 
words, whether there are binding transmission constraints, the dispatchable thermal 
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generators can be called on to supply similarly high amounts — but thermal generation does 
not get as low when at least one transmission constraint is binding. By contrast, the whole 
distribution of wind is shifted to the right in intervals when χ = 1. The variability of wind 
generation across periods is also higher. The distribution of solar is the most similar across 
the two subsets of any of the variables in Table B6. Physical responsive capability differs 
most in the lower values. With some binding transmission constraints, the physically 
responsive generators are evidently called on at least to some extent to help mitigate the 
effects of the constraints. There are also many intervals, however, when RC remains large, 
despite the presence of transmission constraints. That implies that the RC is likely not always 
well located to alleviate the constraints. 

Considering the results from Tables B5 and B6 showing that the distributions of λ and the 
exogenous variables differ depending on the value of χ, we estimated separate regression 
models for the two regions. Table B7 presents the results for the 9,883 intervals when χ = 0, 
while Table B8 does the same for the 34,798 intervals when χ = 1. 

As with the other kernel regressions reported later in the paper, the bootstrap standard errors 
were obtained using 500 replications.32 The bandwidth was chosen by cross-validation to 
minimize the integrated mean squared error of the prediction. An Epanechnikov kernel was 
used. All estimations were done using the STATA routine npregress. 

Table B7 — Kernel Regression Model for λ when χ = 0 

Variable 
Estimated 
Coefficient 

Bootstrap 
Std Err 

p-value
H0: coef = 0 

Mean 
λ 59.0015 3.5434 0.000 

Effects (Averages of Derivatives) 
load 35.3141 6.7866 0.000 

thermal -33.0012 6.9210 0.000 
wind -34.8864 6.9530 0.000 
solar -36.6088 7.1541 0.000 

RC -21.4800 2.2135 0.000 
R2 = 0.6949 

Source: Authors. 

The coefficients labeled “Mean” in Tables B7 and B8 are the average of the predicted means 
from the local linear regressions. They are close to the respective unconditional means of 
λ in Table B5. The coefficients labeled “Effects” in Tables B7 and B8 are averages of the 
derivatives of λ with respect to each variable. Although the means of λ are different in the 
two subsamples, the effects of marginal changes in each of the explanatory variables, apart 
from RC, are similar. 
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Table B8 — Kernel Regression Model for λ when χ = 1 

Variable 
Estimated 
Coefficient 

Bootstrap 
Std Err 

p-value
H0: coef = 0 

Mean 
λ 107.8794 2.6053 0.000 

Effects (Averages of Derivatives) 
load 37.5752 3.3891 0.000 

thermal -33.2994 3.4681 0.000 
wind -36.4283 3.2704 0.000 
solar -34.1892 3.4708 0.000 

RC -88.0728 3.4483 0.000 
R2 = 0.7008 

Source: Authors. 

As with the logit and probit models for χ, the coefficients on load are opposite in sign to 
those on thermal, wind, and solar. They imply that an increase in load fully met by thermal 
or wind generation raises the shadow price, λ, regardless of whether any transmission 
constraints bind. If increased load is satisfied entirely by solar, however, λ increases on 
average when χ = 1 but slightly decreases on average when χ = 0, albeit not statistically 
significantly different from zero. 

The estimates also imply that increasing wind or solar while backing out an equivalent 
amount of thermal generation reduces λ, regardless of whether any transmission constraints 
bind. Such an outcome would be consistent with the so-called merit order effect. The 
addition of zero (or, with subsidies, negative) marginal cost generation pushes the supply 
stack to the right and tends to lower equilibrium prices. However, the estimated differences 
in the effects of marginal changes are all no larger than the estimated standard errors.  

Having more physical responsive capability available (higher RC) tends to reduce λ 
regardless of the value of χ. However, the effect is more than four times stronger when at 
least one transmission constraint is binding. 

Determinants of ERCOT LMPs when Some Transmission Constraints Bind 

We next focus on the effects the same exogenous variables have on the transmission 
constraint shadow prices in the 34,798 intervals when χ = 1. The LMP at bus i in period t can 
be written as LMPit t itλ µ= + . Subtracting λt from LMPit yields µit. In this section, we examine 
the effect of load, thermal, wind, solar, and RC on the µit. 

Recall that a constrained transmission link flowing power from bus i to bus j in period t leads 
to a negative µit and positive µjt that depend on the same Lagrange multiplier. However, these 
positive and negative values will only have the same absolute values if the shift factor for bus 
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i equals that for bus j . In turn, the shift factor for a bus will depend on how well connected 
that bus is to the rest of the network. A better-connected bus will have a smaller shift factor. 

Since we can have many thousands of non-zero µit values in any period, we reduced the 
dimensionality of the problem by investigating the behavior of some moments of the cross-
sectional distributions of the µit across the 34,798 periods. Although many moments could be 
chosen, this discussion will focus on the mean and the median, the standard deviation, and 
the 5th and 95th percentiles of each distribution.  

Table B9 presents summary statistics for the distribution of each moment across 34,798 
intervals. Since a negative µit is coupled with a positive µjt on a constrained link between i 
and j , it is not surprising that the mean and median values tend to cluster near zero. The 
median (across periods) of the cross-sectional medians (in each period) is exactly zero, while 
even the 25th and 90th percentiles of the cross-sectional medians are less than 1. The median, 
25th and 75th percentiles, and mean of the cross-sectional means are also close to zero. 

Table B9 — Summary Statistics for Moments of the Cross-Sectional Distributions of µit 

Statistic Mean Median Std Dev 5% 95% 
Minimum -519.32 -471.35 0.00036 -4190.36 -11.07

1% -69.20 -38.12 0.16 -1050.44 0 
5% -7.88 -11.44 0.72 -78.78 0 

10% -4.82 -5.98 1.60 -41.08 0 
25% -1.41 -0.61 4.32 -18.74 0.4 
50% -0.20 0 9.41 -5.82 5.22 
75% 0.39 0.03 27.39 -1.03 22.87 
90% 3.28 0.25 86.13 -0.01 67.00 
95% 6.37 1.55 131.15 0 119.64 
99% 18.86 67.49 559.70 0 397.36 

Maximum 225.95 909.08 2117.25 194 2194.87 
Mean -1.55 -0.16 35.79 -41.44 27.98 

Std Dev 13.42 22.36 94.10 230.63 78.69 
Skewness -9.09 7.29 7.53 -10.45 8.16 

Kurtosis 159.63 176.03 77.91 126.71 116.17 
Source: Authors. 

This conclusion is reinforced by the negative skewness in the distribution of the means and 
the fact that the minimum and 1 percentile values for the means are lower than the 
corresponding statistics for the medians. Finally, the extreme values in the 5% negative tails 
of the cross-sectional distributions are much further from zero than the corresponding 
extreme values in the 95% positive tails of the distributions. There also is superficially 
conflicting evidence. While 99% of the medians are below 67.49, the possibility that the 
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median can be as high as 909.08 shows that large positive µit are possible. Table B10 presents 
some statistics for the cross-sectional distributions with the 20 largest medians out of 34,798. 

Table B10 — Other Statistics for Cross-Sectional Distributions with the 20 Largest Medians 

Median Minimum Mean Maximum 
303.71 -4652.74 -126.98 4828.98 
303.90 -4243.95 -113.31 2248.43 
307.21 -5541.89 -90.19 5311.54 
308.56 -5817.35 -119.28 1278.16 
310.75 -5900.93 -120.88 1278.88 
314.37 -5471.97 -87.21 5497.27 
314.53 -5471.81 -87.24 5497.43 
316.70 -4717.85 -106.65 2973.56 
317.74 -4619.82 -133.81 2761.20 
321.14 -6477.20 -123.42 1145.90 
324.09 -5173.40 -129.72 2753.83 
325.39 -4633.41 -134.74 2769.17 
333.78 -5121.19 -134.82 2780.23 
346.66 -6277.57 -134.67 2164.51 
350.37 -5098.74 -142.50 4374.38 
355.00 -5205.02 -140.91 2302.95 
363.61 -7495.00 -130.22 4830.95 
370.92 -6485.63 -148.81 4161.44 
388.80 -5141.16 -139.13 2897.77 
909.08 -6473.70 -519.32 2199.52 

Source: Authors. 

Comparing Tables B9 and B10, it is evident that these distributions are also among those with 
the most negative means. In fact, they are in the lowest half of 1% of distributions ranked by 
mean. Positive medians imply these distributions have more positive than negative µit, but 
the negative means imply that the negative values tend to be larger in magnitude. This is 
attested to by the fact that the absolute value of the minimum is, on average, almost 2,300 
above the maximum. For the three cases where the maximum is larger, it is barely so. 

The tendency for negative µit to be larger in magnitude than positive µjt implies that the shift 
factors on the buses i where µit < 0 are larger than the shift factors on the buses j where µjt > 
0. In turn, that implies that buses i flowing power into the network on constrained links tend
to be less well-connected to the rest of the network than buses j on the other ends of those
constrained links. The implication is that the most congested lines tend to connect isolated,
remote generators to buses that are much better connected to the rest of the network.Various
statistics in Table B9 suggest that transmission constraints tend to have larger negative than
positive impacts on LMPs. The fact that the average mean is negative while the median of
the medians is zero suggests that negative µit tends to be larger in magnitude than positive µit.
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Table B11 shows how the cross-sectional distributions µit vary across subsets of load.33 The 
variable N equals the number of periods making up each average. The moments in columns 
2–4 of Table 11 are similar to each other, but differ more noticeably from those in the first 
column and substantially from those in column 6. The moments in column 5 appear to be a 
mixture of those in columns 2–4 and those in column 6. Using the approach usually taken in 
the economic analysis of electricity supply, we could associate loads up to around 40 GW as 
base loads, the 40-70 GW range as intermediate loads, and above 70 GW as peak loads. 

Table B11 — Means of Moments of Cross-Sectional Distributions of Ξ it by Subsets of Load 

< 40 GW 40-50 GW 50-60 GW 60-70 GW 70-80 GW >80 GW
Statistic N = 2619 N = 11094 N = 7752 N = 5096 N = 5547 N = 2690 

Minimum -243.62 -150.75 -176.64 -155.23 -346.95 -678.14
1% -30.47 -23.25 -41.63 -25.54 -118.71 -315.68
5% -12.06 -9.41 -10.84 -10.28 -81.29 -267.17

10% -8.39 -6.78 -6.53 -6.55 -57.31 -223.07
25% -6.19 -4.56 -3.63 -4.13 -5.97 -33.12
50% -3.28 -1.60 -1.09 -1.56 2.88 7.85 
75% -0.59 0.35 0.83 0.62 8.03 28.24 
90% 26.12 16.50 10.74 10.11 18.02 71.52 
95% 40.55 24.26 14.78 14.83 27.22 95.56 
99% 57.43 36.49 32.04 38.40 82.60 185.44 

Maximum 726.24 404.76 324.45 379.01 804.73 1926.96 
Mean 1.330 0.415 -0.333 -0.084 -3.404 -14.976

Std Dev 31.125 18.532 17.520 18.666 55.520 155.963 
Skewness 4.245 -1.646 1.566 2.107 2.189 9.102 

Source: Authors. 

A graphical version of the results in Table 11 can be obtained by estimating Lowess 
smoothing regressions of the 34,798 values of selected quantiles of the cross-sectional 
distributions of the µit on the load. The procedure derives smoothed values as the predicted 
values of the dependent variable from a set of weighted regression equations using moving 
windows of the data.34 Figure B2 graphs these for the 5th, 10th, 25th, 50th, 75th, 90th and 95th 
percentiles. The vertical lines at 44 GW and 72 GW are candidate load thresholds for 
separating the intermediate from the base and peak loads. Clusters of points at loads below 
about 44 GW and above about 72 GW are evident in several of the plots in Figure B1. 
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Figure B2 — Lowess Smoothed Relationship between Quantiles of µit Distributions and Load 

Source: Authors. 

To further investigate determinants of high and low µit that result from transmission 
constraints, we estimated regression equations for the moments, presented in Table B9, of 
the cross-sectional distributions. Splitting the sample into periods where load < 44, 
44 ≤ load < 72, and load ≥ 72, we found strong evidence that the relationship of the µit 
distributions to the exogenous variables apart from load also differed across these different 
regions. For example, simple OLS regressions estimated with robust (Huber-White 
sandwich) standard errors gave statistically significantly different coefficients on the 
exogenous variables across the three regions. It makes sense that the effect of a reduction in 
wind output, for example, is likely to depend on the set of generators already supplying the 
system and the marginal costs of generators that could be ramped up to compensate. 
However, it is more consistent with the underlying economic determinants of the outcomes 
to allow the relationships to change continuously as load (and the other explanatory 
variables) changes rather than separating the sample into three discrete categories based on 
load. To allow for flexible functional forms, we again estimated nonparametric kernel 
regressions with bootstrap standard errors using 500 replications. Bandwidth and kernel 
choices and the potential explanatory variables remained the same as for the models for λ.  

Table B12 presents estimates of how the cross-sectional mean value of µit in each period t 
relates to load, thermal, wind, solar, and physical response capability RC. Table B13 gives 
corresponding estimates for the medians. The results in Tables B12 and B13 reinforce the 
conclusions from the analysis of moments as a function of load only. The conditional mean 
(across periods) of the cross-sectional mean values of µ in each period is more negative than 
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the conditional mean of the medians. In fact, the latter is not statistically significantly 
different from zero. This again implies that binding transmission constraints have a greater 
impact on buses near supply source connections than on buses downstream of constraints.  

Table B12 — Nonparametric Kernel Regression for the Cross-Sectional Mean of µ 

Variable 
Estimated 
Coefficient 

Bootstrap 
Std Err 

p-value
H0: coef = 0 

Mean 
E(µ) -1.7749 0.0834 0.000 

Effects (Averages of Derivatives) 
load -1.7843 0.1293 0.000 

thermal 1.7038 0.1302 0.000 
wind 1.4210 0.1252 0.000 
solar 1.5244 0.1322 0.000 

RC 1.4550 0.0806 0.000 
R2 = 0.5320 

Source: Authors. 

Table B13 — Nonparametric Kernel Regression for the Cross-Sectional Median of µ 

Variable 
Estimated 
Coefficient 

Bootstrap 
Std Err 

p-value
H0: coef = 0 

Mean 
{µ|Pr(µi ≤µ)=0.5} -0.0596 0.1263 0.637 

Effects (Averages of Derivatives) 
load 1.9831 0.2432 0.000 

thermal -1.8001 0.2459 0.000 
wind -1.7445 0.2348 0.000 
solar -2.0803 0.2508 0.000 

RC -1.3189 0.1957 0.000 
R2 = 0.4858 

Source: Authors. 

An increase in load matched by an increase in thermal or wind generation (while leaving χ = 
1) tends to reduce the mean and increase the median of µ. The magnitudes of both effects are
greater for wind. Thus, even though the magnitudes of the negative µ values tend to
increase, the number of negative versus positive µ values tends to fall. Where µi becomes
more negative, some binding transmission constraints are becoming more severe. But an
increase in the median suggests a greater number of more moderately constrained lines.

The results are different for solar. The estimated coefficient on solar in Table B12 implies its 
effect on the mean of µ lies between the effects of wind and thermal generation. On the 
other hand, the coefficient on solar in Table B13 is more negative than the amount by which 
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the coefficient on load is positive. Hence, an increase in load that is matched by an increase 
in solar tends to reduce both the mean and the median values of µ . But since the mean of µ 
falls by more in the case of wind, then more wind generation is likely to produce large 
negative µ values, while more solar is more likely to increase the number of small negative µ 
values. These results suggest that when constraints are binding, the source end of the link 
tends to be connected to solar or wind generation. The differences in the behaviors of the 
means versus medians suggest that wind tends to be more seriously bottlenecked than solar . 

The coefficients on RC in Tables B12 and B13 reveal that an increase in physical responsive 
capability holding load and generation fixed tends to increase the cross-sectional mean and 
reduce the median of µ . This is consistent with higher RC allowing for fewer binding 
transmission constraints. However, the estimate in Table 8 implies that an increase in RC 
holding load and generation fixed, while maintaining χ = 1, also tends to substantially reduce 
λ. This would, by itself, tend to reduce the costs associated with the transmission constraints. 

Table B14 shows the results of a kernel regression with the cross-sectional standard 
deviations as the dependent variable. An increase in load that is matched by an increase in 
thermal generation tends to raise the standard deviation of µ. The effect is again greater if the 
increased load is instead matched by increased wind output. Table B14 shows, however, that 
an increase in load that is matched by an increase in solar generation tends to increase σ(µ) 
by about the same amount as when thermal generation supplies the increase in load. An 
increase in RC holding load and generation fixed strongly reduces σ(µ). 

Table B14 — Nonparametric Kernel Regression for Cross-Sectional Standard Deviation of µ 

Variable 
Estimated 
Coefficient 

Bootstrap 
Std Err 

p-value
H0: coef = 0 

Mean 
σ(µ) 37.2857 0.5633 0.000 

Effects (Averages of Derivatives) 
load 18.4331 1.0116 0.000 

thermal -17.4601 1.0197 0.000 
wind -16.8259 0.9733 0.000 
solar -17.8710 1.0359 0.000 

RC -16.2710 0.6840 0.000 
R2 = 0.6073 

Source: Authors. 

Finally, Tables B15 and B16 present the kernel regression results for the lower and upper 
tails of the cross-sectional distributions of µ. From Table B9, and as illustrated in Figure B2, 
the former tends to be negative and the latter positive throughout the range of loads.  
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Table B15 — Nonparametric Kernel Regression for the Lower 5% Tail of µ 

Variable 
Estimated 
Coefficient 

Bootstrap 
Std Err 

p-value
H0: coef = 0 

Mean 
{µ|Pr(µi ≤µ)=0.05} -45.1171 1.5037 0.000 

Effects (Averages of Derivatives) 
load -40.6847 4.8519 0.000 

thermal 35.5341 6.8012 0.000 
wind 30.4997 8.2293 0.000 
solar 32.4812 7.8371 0.000 

RC 36.7822 3.1556 0.000 
R2 = 0.6151 

Source: Authors. 

Table B16 — Nonparametric Kernel Regression for the Upper 5% Tail of µ 

Variable 
Estimated 
Coefficient 

Bootstrap 
Std Err 

p-value
H0: coef = 0 

Mean 
{µ|Pr(µi ≤µ)=0.95} 29.6193 0.4889 0.000 

Effects (Averages of Derivatives) 
load 8.1059 0.8499 0.000 

thermal -7.8840 0.8614 0.000 
wind -8.0265 0.8261 0.000 
solar -9.5005 0.8632 0.000 

RC -13.4043 0.6411 0.000 
R2 = 0.4073 

Source: Authors. 

An increase in load that is matched by an increase in thermal generation exacerbates existing 
binding transmission constraints. The magnitudes of both extremely negative and extremely 
positive values of µ tend to increase.  

An increase in load that is instead matched by an increase in wind has a substantially larger 
impact on the negative tails, but a smaller impact than thermal generation on the positive 
extreme values of µ. This result again emphasizes that increased wind strains the capacity of 
lines leading from the wind generation sites to better connected regions that are not as 
strongly impacted by the line constraint. 

Increased solar has an impact on negative extreme values of µ that is intermediate between 
wind and thermal generation. However, an increase in load that is matched by an increase in 
solar tends to reduce large positive extreme values of µ. 



55 

 

An increase in physical responsive capability while holding load and generation fixed 
strongly reduces the magnitudes of extremely negative and extremely positive values of µ . 

Locations of Binding Transmission Constraints 

Thus far, we have examined the cross-sectional distribution of LMPs for each time period. 
Another view can be obtained by averaging the LMPs across time periods for each electrical 
bus on the network. As noted earlier, the number of buses in the complete data set changes 
over time as ERCOT adds new generation and demand centers or new transmission lines or 
as old facilities are retired. For this analysis, we focused on a subset of 1,440 periods (10 days) 
where peak loads on most days were near the highest within the full sample period, and the 
number of buses (16,677 in total) did not change. 

The mean of all 1,440×16,677 LMPs in the data set is $320.70. A bus with an average LMP 
across the 1,440 time periods that is below $320.70 will be more likely than average to be a 
source on one or more constrained transmission links. We call this a “bottlenecked” bus. One 
with an average above $320.70 will be more likely than average to be a sink on one or more 
constrained transmission links. Even if a bus is a sink on one constrained link, however, it 
may not experience above-average LMPs if it is well connected to the network via other 
unconstrained links. In that case, its shift factor will tend to be low. We thus refer to buses 
with higher-than-average LMPs as “weakly connected sinks.” 

Unfortunately, ERCOT does not disclose the location of individual buses on the network. 
However, Velocity Suite has a data set of location coordinates for a subset of the buses. Of 
the 16,677 buses in our restricted data set, around 11,000 could be matched to entries in the 
Velocity Suite data set. Figure B3 maps these matched buses by their average LMP. In this 
figure, buses with an average LMP close to $320.70 are colored yellow. Buses are more 
bottlenecked as yellow shades to orange and then dark red. Buses that are instead more 
weakly connected sinks are shaded from yellow to green and then to blue and gray. The 
severely bottlenecked buses tend to be concentrated in South Texas and especially close to 
the Mexican border. More moderately constrained buses (orange) are in the Houston and 
Dallas metro areas and in West Texas. The somewhat weakly connected sinks (greens) tend 
to be concentrated in the San Antonio and Austin metro areas and surrounding regions. 
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Figure B3 — Bus Locations Colored by Average Locational Marginal Price 

Source: Authors. 

Figure B4 shows the locations of different types of generation units in summer 2023. This 
suggests that the bottlenecked buses in South Texas may be due in part to the rapid 
expansion of wind generation in that coastal area without a corresponding build-out in new 
transmission capacity. The opposite problem in the San Antonio and Austin metro areas may 
be the result of rapid growth in demand in that part of the state that has not been matched 
by sufficient increased generating or transmission capacity. 
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Figure B4 — ERCOT Capacity by Fuel by County, Summer 2023 

Source: Authors. 

Concluding Comments 

The component of ERCOT LMPs that is the result of binding transmission constraints can 
add substantially to the average level of wholesale prices. Nevertheless, these components 
subtract from some prices while adding to others. In most periods, the overall impact across 
all buses on the network is close to zero.  

Buses that are frequently on the supply end of constrained links will tend to have very low 
or even negative prices most of the time. Buses on the demand end of the same links will 
tend to have prices exceeding the average price across all buses most of the time. In principle, 
these price differentials should signal where it is desirable to expand network capacity. 
Simultaneously, they should signal to producers where it is less desirable to expand 
generation output or increase electricity demand. 
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Our analysis of ERCOT data covering around 152 days in the summer and fall of 2023 found 
evidence that wind generators tend to be the most severely affected by inadequate 
transmission capacity, while utility-scale solar plants are also affected, but to a lesser extent. 
On the demand side, there was also evidence that the West zone is more affected by 
transmission constraints.  

LMPs currently calculated in ERCOT reflect only transmission constraints. They do not 
reflect marginal transmission losses. To send efficient signals about the locations of new 
generating capacity, the location of large new industrial consumers of electricity, or the best 
places to upgrade transmission lines, the prices ought to be changed to reflect marginal 
transmission losses in addition to capacity constraints. At the request of the PUCT, ERCOT 
undertook a study to ascertain the impact of including marginal transmission losses in LMPs. 
They found evidence that this would incentivize a more efficient use of generation resources 
and improve the operation of the system in the short run. ERCOT did not assess, however, 
how such a change could affect long-run investment incentives. Taking those effects into 
account would substantially increase the benefits of moving to truly cost-reflective LMPs. 
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20 “Report on Existing and Potential Electric System Constraints and Needs” (Austin: ERCOT, December 2022), 
https://www.ercot.com/files/docs/2022/12/22/2022_Report_on_Existing_and_Potential_Electric_System_Constr
aints_and_Needs.pdf. 
21 “Long-Term West Texas Export Study” (Austin: ERCOT, January 2022), 
https://www.ercot.com/files/docs/2022/01/14/Long-Term-West-Texas-Export-Study-Report.pdf. 
22 “2024 LTSA Update” (Austin: ERCOT, May 16, 2024), 15, 
https://www.ercot.com/files/docs/2023/05/12/2024_LTSA_update_20230516_v1.0.pdf. 
23 “Study of the System Benefits of Including Marginal Losses in Security-Constrained Economic Dispatch” 
(Austin: ERCOT, June 29, 2018), 
https://www.ercot.com/files/docs/2018/06/29/Study_of_the_Benefits_of_Marginal_Losses_FINAL.pdf. 
24 The number of buses changes as new supplies and demands are connected to the network, new transmission 
lines are built, and some old transmission lines or supply or demand points are eliminated. Infrequent 
calculations made when the load is close to capacity add some observations. 
25 In practice, changing the capacity of just one link in the network will, in general, affect flows on many other 
links in the network. This is known as the problem of “loop flows.” This is why no existing market-based 
electricity supply system allows anyone to build or upgrade a transmission link without some sort of public 
process to assess the value of such a link relative to its costs, all impacts considered. 
26 A nonlinear model of the network is used to calculate these offline, separately from the linear model used to 
calculate locational marginal prices (LMPs). The shift factors used in ERCOT are available only to market 
participants. 
27 Since power flows must respect Kirchhoff’s circuit laws, alterations to demand or supply at either end of a 
line will change flows not only on that line, but also on many lines in the network. In a nonlinear manner, it 

https://www.energy.gov/sites/prod/files/2014/08/f18/c_lasher_qer_santafe_presentation.pdf
https://www.spglobal.com/commodityinsights/en/market-insights/latest-news/natural-gas/121621-texas-regulators-order-power-market-reform-phase-i-analysis-of-bigger-changes
https://www.spglobal.com/commodityinsights/en/market-insights/latest-news/natural-gas/121621-texas-regulators-order-power-market-reform-phase-i-analysis-of-bigger-changes
https://www.bakerinstitute.org/research/resource-adequacy-ercot-how-long-term-market-design-reforms-could-enhance-reliability
https://www.bakerinstitute.org/research/resource-adequacy-ercot-how-long-term-market-design-reforms-could-enhance-reliability
https://www.puc.texas.gov/agency/resources/pubs/news/2023/puct_adopts_performance_credit_mechanism_reliability_service.pdf
https://www.puc.texas.gov/agency/resources/pubs/news/2023/puct_adopts_performance_credit_mechanism_reliability_service.pdf
https://www.ercot.com/gridmktinfo/dashboards/ancillaryservices
https://www.ercot.com/files/docs/2022/12/22/2022_Report_on_Existing_and_Potential_Electric_System_Constraints_and_Needs.pdf
https://www.ercot.com/files/docs/2022/12/22/2022_Report_on_Existing_and_Potential_Electric_System_Constraints_and_Needs.pdf
https://www.ercot.com/files/docs/2022/01/14/Long-Term-West-Texas-Export-Study-Report.pdf
https://www.ercot.com/files/docs/2023/05/12/2024_LTSA_update_20230516_v1.0.pdf
https://www.ercot.com/files/docs/2018/06/29/Study_of_the_Benefits_of_Marginal_Losses_FINAL.pdf
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will also affect other factors, such as voltage, reactive power, and frequencies. As a result, a model of the 
network is needed to calculate the marginal impact on flows from a small change in net demands at given 
locations. The shift factors used in ERCOT are available only to market participants. 
28 Infrequent calculations made when the load is close to capacity add some observations. Although some 
successive observations are thus made at much less than five minutes apart, for convenience we always refer to 
the time dimension of the observations as “five-minute intervals.” We started with 44,863 intervals but dropped 
182 because of missing physical response capability values; the number of buses changes as new supplies and 
demands are connected to the network, new transmission lines are built, and some old transmission lines or 
supply or demand points are eliminated. 
29 In the period our data covers, there were 859 settlement points compared to 16,677 electrical buses. As noted, 
wholesale market payments are based on prices that are also aggregated temporally into 15-minute intervals. 
30 Thermal plus wind plus solar generation does not equal total load, but the difference is usually less than 5% of 
ERCOT load. Since load is actual energy delivered in megawatt-hours (MWh), total supply will generally 
exceed load because of transmission losses. In addition, sources of supply apart from thermal, wind, and solar 
are hydro, supply from storage (consumption by these devices is included in load), “other” (mainly biomass or 
capacity from settlement-only distributed generators), and imports of electricity from neighboring systems. 
31 Perhaps this indicates that some nonlinearity in reserve capacity could improve the fit. 
32 Increasing the number of replications from 400 to 500 changed the standard error estimates by about the 
same amount as changing the seed value in the pseudo-random number generator used to choose the bootstrap 
samples. 
33 Recall that the load (and values of other explanatory variables in Table 2) applying to period t is measured 
over the five-minute interval closest to but preceding t. 
34 Denote the load in period t by xt and the corresponding dependent variable by yt, for t = 1, 2, …, 34,798. The 
data is first ordered based on increasing values of xt and then divided into a set of overlapping subsets, called 
“moving windows.” In our application, the moving window for period t includes the closest 3,480 loads above 
and 3,480 loads below xt and the corresponding values of yt. These values are then used to estimate a (local) 
weighted linear regression. The weight applied at a given load in the moving window declines cubically with 
the distance between that load and xt. The value plotted at xt is the predicted value from this local regression. 
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