Energy Market Consequences of an Emerging U.S. Carbon Management Policy

Kenneth B Medlock III

Fellow in Energy Studies, Baker Institute Adjunct Assistant Professor, Department of Economics

Peter R Hartley

George and Cynthia Mitchell Chair, Department of Economics Rice Scholar, Baker Institute

August 28, 2009

James A Baker III Institute for Public Policy Rice University

Study Scope

- Currently, we are expanding the RWGTM to explicitly account for:
 - Explicit competition among fuels
 - Trade in industrial output and electricity
 - Substitution possibilities in transportation
- A scenario approach will be used to examine and compare various outcomes under different sets of assumptions.
 - Various degrees of CO2 constraint and the associated implications for CO2 pricing, energy use and energy prices will be investigated.
 - The effect of changes to operating and capital costs of alternative technologies and other key assumptions will be examined.
 - The rate of technological innovation will be varied.
 - Regional, disconnected policies versus harmonized, international policies.
 - How do various policies influence the issue of carbon leakage?
- Today, we will discuss several model-related issues. We will first recall the basic implications for carbon price and fuel demands from our previous work...

Carbon Prices (Other Model outputs)

- Carbon prices range significantly across scenarios.
 - Generally prices increase with restrictions
 - Rice model indicates prices needed to encourage investments in alternative.

Natural Gas Demand

- Trends vary significantly, as does timing.
 - Strong relationship between natural gas demand, CCS technology availability and assumptions regarding nuclear power.

Reference Case

- CO2 unconstrained
- Key observations:
 - Fuel shares in electricity generation more or less remain unchanged, although IGCC replaces conventional coal over time
 - Wind and biomass also gain share in electricity generation over time.
 - In transportation, natural gas share grows at the expense of gasoline in the near term but shares then stabilize.
 - In residential and commercial, natural gas displaces heating oil.
 - Fuel prices generally rise over time to almost double their 2005 levels by 2040. Prices stabilize thereafter.

Reference Case (cont.)

• Fuel use in power generation, 2005-2030

CO2 Constrained (Downstream)

• Fuel use in power generation, 2005-2030

Discussion Items

- Long Run F&D Costs... what is the appropriate reference point?
- Capex for Generation types, CTL, CCS and Alternative Energy
- Views on shale, flow/decline rates, costs, etc.
 - Current inputs
- Economic outlook
- Industrial demand relocation... "carbon leakage" issue.
 - Composition of load... what is exportable?
- Discussion of wind and other renewables for gas and electricity
- Approach to liberalization in European PL market/Russian domestic market. Model or not?
- When will investments begin to grow substantially in Iraq? Current view is 2015.
- When do backstops become relevant? Discuss the impact of R&D and the expected rate of innovation. Modeling to inform.
- What form of CO2 constraint should be modeled? Should we model scenarios or do we want to predict policy. What sort of issues do you see looming?

Long Run F&D Cost

• Index to oil price... we currently assume a long run price of \$60 to establish costs

Capital Costs

- Capital costs for Generation Sources
 - Two scenario tracks defined by DOE costs in one and industry-vetted costs in the other
 - In general, industry-vetted = 1.8 x DOE... is this a myopic view?

Technology	Total Overnight Cost in 2007 (2006 \$/kW)	Variable O&M ⁵ (million 2006 \$/kW)	Fixed O&M ⁵ (2006 \$/kW)	Heat Rate in 2007 ⁶ (BTU/kWh)	Heat Rate nth-of-a-kind (BTU/kWh)
Scrubbed Coal New ⁷	1,534	4.46	26.79	9,200	8,740
Integrated Gasification Combined Cycle (IGCC) ⁷	1,773	2.84	37.62	8,765	7,450
IGCC with CCS	2,537	4.32	44.27	10,781	8,307
Conventional Gas/Oil Combined Cycle	717	2.01	12.14	7,196	6,800
Advanced Gas/Oil Combined Cycle (CC)	706	1.95	11.38	6,752	6,333
Advanced CC with CCS	1,409	2.86	19.36	8,613	7,493
Conventional Combustion Turbine ⁸	500	3.47	11.78	10,833	10,450
Advanced Combustion Turbine	473	3.08	10.24	9,289	8,550
Fuel Cells	5,374	46.62	5.50	7,930	6,960
Advanced Nuclear	2,475	0.48	66.05	10,400	10,400
Distributed Generation - Base	1,021	6.93	15.59	9,200	8,900
Distributed Generation - Peak	1,227	6.93	15.59	10,257	9,880
Biomass	2,798	6.53	62.70	8,911	8,911
MSW - Landfill Gas	1,897	0.01	111.15	13,648	13,648
Geothermal ^{7, 9}	1,110	0.00	160.18	35,376	33,729
Conventional Hydropower ⁹	1,551	3.41	13.59	10,022	10,022
Wind	1,434	0.00	29.48	10,022	10,022
Wind Offshore	2,886	0.00	87.05	10,022	10,022
Solar Thermal ⁷	3,744	0.00	55.24	10,022	10,022
Solar Photovoltaic ⁷	5,649	0.00	11.37	10,022	10,022

Selected Regional Natural Gas Prices

- Increased trade leads to price differentials that reflect transport differentials
- NBP over HH by about 30 cents... (this is the result of shale)
- Longer term prices at Henry Hub (averages)
 - 2010-2020: \$ 6.98 2021-2030: \$ 7.79

Shale gas

- Resource assessment is large. Cost curves assume about 80% of the resource is available at the associated "break-even" price.
- However, short run pressures can push cost in any given period higher.
- Costs have been falling, and may yet continue. Recent estimates from the PGC exceed current estimates in the model.

Antrim
Devonian/Ohio
Utica
Marcellus
Marcellus T1
Marcellus T2
Marcellus T3
NW Ohio
Devonian Siltstone and Shale
Catskill Sandstones
Berea Sandstones
Big Sandy (Huron)
Nora/Haysi (Huron)
New Albany
Floyd/Chatanooga
Haynesville
Haynesville T1
Haynesville T2
Haynesville T3
Fayetteville
Woodford Arkoma
Woodford Ardmore
Barnett
Barnett T1
Barnett T2
Barnett and Woodford
Palo Duro
Lewis
Bakken
Niobrara (incl. Wattenburg)
Hilliard/Baxter/Mancos
Lewis
Mowry
Montney

Horn River Utica

Total US Shale

Total Canadian Shale

Total North America

Mean Technically	
Recoverable	
Resource	Breakeven Price
13.2	\$ 6.50
169.6	
5.4	\$ 7.00
134.2	
47.0	\$ 5.75
42.9	\$ 6.50
44.3	\$ 7.00
2.7	\$ 7.25
1.3	\$ 7.25
11.7	\$ 7.25
6.8	\$ 7.25
6.3	\$ 6.50
1.2	\$ 7.25
3.8	\$ 7.25
2.1	\$ 6.50
90.0	
36.0	\$ 4.75
31.5	\$ 5.75
22.5	\$ 6.75
36.0	\$ 5.25
8.0	\$ 6.00
4.2	\$ 6.00
54.0	
32.2	\$ 4.50
21.8	\$ 6.00
35.4	\$ 7.00
4.7	\$ 7.00
10.2	\$ 7.25
1.8	\$ 7.50
1.3	\$ 7.25
11.8	\$ 7.25
13.5	\$ 7.25
8.5	\$ 7.25
30.0	\$ 6.00
50.0	¢ 5.25

.

30.0	\$ 6.00
50.0	\$ 5.25
10.0	\$ 7.00

468.0
90.0
558.0

Shale Production

- Strongest shale production is in Barnett.
- There is strong growth in the Marcellus, Fayetteville, and Haynesville shales in particular, with modest growth in several others.

LNG Imports to the US

• Growth out of 2008 but stagnant from 2011-early 2020s. Low annual load factors on LNG regas facilities.

Global Gas Trade: LNG vs. Pipeline

- LNG growth is strong, reaching about 50% of total international natural gas trade by the late 2020s.
 - This date moves under different scenarios, but the pace of growth in LNG is generally stronger than pipeline trade.

Economic Growth

• Current economic and financial crisis is incorporated. We use the IMF June '09 outlook for growth through 2014 for all countries. Beyond 2014, growth is governed by a model of conditional convergence.

USA

Industrial gas demand

- Will incorporate model of industrial output to capture extent of relocation... the "carbon leakage" issue. Key question, what load is "exportable"?
 - Data Sources: UN trade data (Comtrade Database) and IEA Energy Balances

Industrial gas demand (cont.)

- Where will load go?
 - We are analyzing the trade databases to discern any changes in the flow of trade in gasintensive industries.

Remaining Discussion Items

- Discussion of wind and other renewables for gas and electricity
- Approach to liberalization in European PL market/Russian domestic market. Model or not?
- When will investments begin to grow substantially in Iraq? Current view is 2015.
- When do backstops become relevant? Discuss the impact of R&D and the expected rate of innovation. Modeling to inform.
- What form of CO2 constraint should be modeled? Should we model scenarios or do we want to predict policy. What sort of issues do you see looming?