

National Oil Company Efficiency: Theory and Evidence

Stacy Eller

Peter Hartley

Kenneth B Medlock III

James A. Baker III Institute for Public Policy RICE UNIVERSITY

Theoretical Model

Economic model precepts

- Intertemporal, optimizing model of a National Oil Company (NOC)
- Contrast a NOC to a shareholder-owned firm
- Capture *systematic* effects from the NOC institutional arrangement
- Weaker monitoring of a NOC and differing political goals imply that in addition to commercial returns NOC management choices will reflect:
 - ♦ Increased employment in the firm of labor or other domestic inputs
 - ◆ Domestic consumer surplus from oil product sales
 - ♦ Pressure to increase current relative to future revenue a high discount rate
- Without these concerns, the NOC optimization problem approaches that of a private monopoly firm
- In the *efficient* case:
 - Domestic oil consumers are neither taxed nor subsidized relative to other constituents, and
 - ♦ Domestic consumer surplus is weighed identically to NOC profits

NOC versus efficient case: output, inputs, cash flow

Output shifted forward, lower reserves & cash flow, higher employment

Effect of excess emphasis on current revenue

 Output & cash flow shifted forward, reduced investment in reserves, increased employment except in the long term

Effect of increasing the employment incentive

Output & cash flow shifted forward, reduced investment in reserves, increased employment except in the long term

NOC versus efficient domestic consumption

- The subsidy raises domestic consumption for the NOC
- Increasing the domestic subsidy also shifts employment forward relative to the efficient case, but the effects are small

Empirical Analysis

Data and methods

- Sample of 80 firms over 2002-2004 (Energy Intelligence "Ranking the World's Oil Companies") with data on:
 - revenue,
 - reserves of natural gas and crude oil,
 - employment,
 - production of natural gas and crude oil and crude oil products, and
 - the government ownership share
- Used both non-parametric Data Envelopment Analysis (DEA) and a parametric Stochastic Frontier Approach (SFA)
- Motivated by the theoretical model we use revenue as the output measure
 - ◆ Political pressure is likely to force a NOC to subsidize domestic consumers
 - ◆ To the extent that NOC's generate less revenue for given inputs we can conclude that their objectives differ from a private firm
- Also in accordance with the theoretical model, we allow for three inputs: employees, oil reserves and natural gas reserves

Firms in the sample (statistics for 2004)

Company	Revenue per Emplo yee \$/employee	Revenue per Reserves \$/boe	Gov ernment Ownership	Country
	<i>ψremployee</i>	NOCs	,,,	
Adnoc	205	0.20	100%	UAE
CNOOC	2,656	2.97	71%	China
EcoPetrol	824	2.26	100%	Colombia
Eni	1,056	10.50	30%	Italy
Gazprom	103	0.16	51%	Russia
INA	187	11.70	75%	Croatia
KMG	n/a	n/a	100%	Kazakhastai
KPC	1,650	0.34	100%	Kuwait
MOL	635	42.37	25%	Hungary
NIOC	283	0.11	100%	Iran
NNPC	1,460	0.56	100%	Nigeria
NorskHydro	673	11.37	44%	Norway
OMV	2,214	8.90	32%	Austria
ONGC	298	2.11	84%	India
PDO	1,591	0.98	60%	Oman
PDVSA	1,985	0.66	100%	Venezuela
Pemex	506	4.01	100%	Mexico
Pertamina	453	0.73	100%	Indonesia
Petrobras	773	3.39	32%	Brazil
PetroChina	111	2.52	90%	China
Petroecuador	1,026	1.25	100%	Ecuador
Petronas	1,202	1.45	100%	Malaysia
PTT	2,896	16.68	100%	Thailand
QP	1,800	0.10		Qatar
Rosneft	86	0.19		Russia
SaudiAramco	2,261	0.40		Saudi Arabi
Sinopec	192	19.76		China
Socar	n/a	n/a	100%	Azerbaijan
Sonangol	755	1.37		Angola
Sonatrach	688	0.93		Algeria
SPC	375	1.71		Syriac
Statoil	1,910	10.85		Norway
TPAO	154	1.53	100%	Turkey
Average	1,000.27	5.23		
	Ma	ajor IOCs		
BP	2,788	15.68	0%	UK
Chevron	2,606	12.78		US
ConocoPhillips	3,368	14.03	0%	US
ExxonMobil	3,148	12.26	0%	US
Shell	2,418	21.67	0%	Netherland
Average	2,865.48	15.28		

	Revenue	Revenue						
	per	per	Gov e rn me nt					
Company	Emplo yee	Reserves	Ownership	Country				
	\$/employee	\$/boe	%					
<u>Others</u>								
Amerada Hess	1,532	16.07		US				
Anadarko	1,838	2.52		US				
Apache	2,019	2.71		US				
BG	1,547	3.64		UK				
Burlington	2,537	2.74		US				
Chesapeake Energy	1,577	3.22		US				
CNR	4,606	3.85		Canada				
Devon	2,356	4.33		US				
Dominion	847	13.81	0%	US				
EnCana	2,915	4.48		Canada				
EOG	1,844	2.38	0%	US				
ForestOil	1,841	4.02	0%	US				
HuskyEnergy	2,149	9.53	0%	Canada				
Imperial	2,838	35.72	0%	Canada				
Kerr-McGee	1,263	4.15	0%	US				
Lukoil	233	1.68	0%	Russia				
Maersk	60	2.90	0%	Denmark				
Marathon	1,757	39.14	0%	US				
Murphy	1,436	21.60	0%	US				
Newfield	2,114	4.45	0%	US				
Nexen	1,048	4.25	0%	Canada				
NipponOil	2,690	131.74	0%	Japan				
Noble	2,433	2.54	0%	US				
Novatek	220	0.21	0%	Russia				
Occidental	1,577	4.46	0%	US				
PennWest	1,577	2.53	0%	Canada				
Petro-Canada	2,370	9.24	0%	Canada				
PetroK azakhstan	546	4.12	0%	Kazakhstan				
Pioneer	1,183	1.76	0%	US				
Pogo	5,088	4.38	0%	US				
RepsolYPF	1,561	10.79	0%	Spain				
Santos	789	1.92	0%	Australia				
Sibneft	189	1.81	0%	Russia				
Suncor	1,447	78.50	0%	Canada				
Surgutneftegas	121	1.01	0%	Russia				
Talisman	2,207	3.26	0%	Canada				
TNK	63	1.66	0%	Russia				
Total	1,406	14.33	0%	France				
Unocal	1,259	4.63		US				
Vintage	1,136	1.76		US				
Woodside	758	2.11		Australia				
XTO	1,437	1.94		US				
Average	1,628.94	11.24						

Simplified representation of DEA

- To graph the data in two dimensions, reserves are converted to barrels of oil equivalent and normalized, along with revenue, on the number of employees
- Technical inefficiency in generating revenue from these inputs can be calculated using the *vertical* distance of a firm from the frontier

Other variables in the analysis

- *Vertical integration* could influence estimated technical efficiency:
 - A vertically integrated firm captures the value added by the internal sale of crude oil to its refining unit
 - Without measuring capital employed in the refining, transporting and marketing, a vertically integrated firm would appear to be relatively efficient at generating revenue from employees and reserves alone
- *Government ownership share* is a key variable for our hypothesis:
 - ♦ Theory implies higher government ownership should give lower efficiency at generating revenue
 - Excess employment should be a key mechanism for this measured technical inefficiency
 - ♦ *Two-tier pricing* is another reason a NOC may generate less revenue

Average pump prices 2004

Average DEA scores over 2002-04

- Five major IOC's are clustered near the frontier
- NOC's tend to be clustered near the bottom
- NOCs average $TE \approx 0.27$
- Sample average $TE \approx 0.40$
- Five major IOCs TE ≈ 0.73

Structural & institutional adjustments

If we include:

- a vertical integration measure (petroleum product sales divided by total liquids production)
- and government ownership share

as "inputs" more firms appear to be on the revised frontier

Stochastic frontier estimation

- Estimated TE is now assumed constant over the three year period
 - ♦ Include yearly effects to allow especially for varying oil and gas prices by year
 - Year effects are not necessary in DEA analysis since TE is calculated for each year separately
- Model 2sf includes vertical integration and government share (like DEA model 3)
- Model 3sf includes a dummy for 2-tier pricing
- Model 4sf includes an employment-government share interaction

Table 4 Š Panel estimation of stochastic frontier^a

	Model 1sf	Model 2sf	Model 3sf	Model 4sf
ln L	0.4847*** 0.0666	0.6459*** 0.0504	0.5648*** 0.0637	0.6077*** 0.0362
ln OilRsv	0.0463 0.0415	0.0666 0.0462	0.1188*** 0.0459	0.1524*** 0.0396
ln NGRsv	0.1695*** 0.0493	0.2091*** 0.0485	0.2069*** 0.0471	0.2035*** 0.0415
GovShare		-0.5970*** 0.1398	-0.3109** 0.1607	2.7912*** 0.8316
VertInt		0.0737*** 0.0203	0.0969*** 0.0198	0.0824*** 0.0198
2TierP			-0.5435*** 0.1570	-0.6654*** 0.1382
GovShare * ln L				-0.3099*** 0.0824
year 2003	0.3022*** 0.0307	0.2950*** 0.0325	0.2877*** 0.0331	0.2872*** 0.0335
year 2004	0.4767*** 0.0312	0.4626*** 0.0330	0.4633*** 0.0334	0.4652*** 0.0339
constant	4.3644*** 0.6561	1.5483*** 0.3474	1.9375*** 0.4860	1.2476*** 0.2894
$\chi^2(d)$	451.33	1112.72	992.72	1643.43
d	5	7	8	9
Log Likelihood	-111.300	-100.041	-94.109	-87.427
# Observations	236	236	236	236

^a Estimated standard errors included beneath each coefficient estimate.

^{*-} statistically significant at the 1% level; **- statistically significant at the 5% level; ***- statistically significant at the 10% level

Other indications of model adequacy

Interpreting the stochastic frontier results

- Vertically integrated firms generate more revenue from inputs of employees and reserves
- Government ownership reduces the ability of the firm to generate revenue
- Domestic price subsidies are one reason government share may reduce revenue
 - ♦ However, since the government share still has a negative effect, this is not the only reason
 - ◆ The positive and significant coefficient on oil reserves in models 3sf and 4sf suggest that accounting for domestic subsidies gives a better model of the determinants of TE in generating revenue
- Since the model implies many consequences of government control should lead to overemployment, we allow for a government share-employment interaction
 - The negative coefficient on the interaction implies that the productivity of labor in generating revenue is lower the higher is government ownership
 - Furthermore, the overall effect of government ownership remains negative (controlling for 2-tier pricing) for firms with a positive government share

Conclusion

Summary remarks

- The theoretical model implies that government ownership of a NOC will redistribute revenue via over-employment and under-investment in reserves and by subsidizing domestic consumption
 - Many of the influences reinforced each other in their effects
- Evidence confirmed that increased government ownership makes the firm less effective at producing revenue from employment and reserves
- We further found specific evidence that:
 - Over-employment was a strong common feature of government-owned firms
 - ♦ Domestic price subsidies negatively affect a NOC's ability to generate revenue
- The relative technical inefficiencies of NOC's, which are observed when one considers only commercial objectives, are largely the result of governments exercising control over the distribution of rents
- The forgone revenue will, however, reduce government spending on other items or require higher taxes
 - Product subsidies or over-employment in a NOC are generally inefficient compared to taxes and transfers as a way of redistributing income
 - They are poorly targeted as transfers, and more inefficient than a broadlybased tax as a means of raising revenue