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Lifecycle Environmental Impacts 
Associated with Biofuels



Biofuels from 
Corn-Soybean Rotations

Soybean Biodiesel
Corn Ethanol
Corn Stover Ethanol

Considered an 
agricultural waste
Critical for soil health 
(soil carbon, erosion control)

Can be harvested and 
baled like hay



A Lifecycle PerspectiveA Lifecycle Perspective

Environmental impacts occur Environmental impacts occur 
at all stages in the lifecycleat all stages in the lifecycle

EthanolEthanol
Soy mealSoy meal

Dried distillers grainsDried distillers grains
Other byOther by--productsproducts

BiodieselBiodiesel
EthanolEthanol



Combustion Combustion 
byproducts, byproducts, 

NN22O, NOO, NOx,x,NHNH33

Runoff Runoff 
pesticides, pesticides, 

NONO33
--, P, P

EnergyEnergy

Fertilizers & Fertilizers & 
PesticidesPesticides

HH22O, O, 
COCO22, N, N22



CO, COCO, CO22, , 
NONOxx, , SOSOxx
VOCsVOCs….….

Energy
Other raw materials

CO, COCO, CO22, , 
NONOxx, , SOSOxx
VOCsVOCs….….

Fuel spills



Life Cycle Assessment (LCA)
Documents material and energy flows 
throughout a product’s life (inventory)

Raw material (including energy ) production
Farming
Biofuel Processing
Biofuel use

Examines environmental impacts of all 
stages in the product’s relevant lifetime

Identifies possible problems or 
opportunities

Quantitative basis for decision-making



Focus today:
Energy / Environmental Issues

Energy Security / Conservation1

How much domestic / renewable energy is 
consumed to generate the biofuel?

Environmental quality2

Are there any detriments from agricultural 
activities required for 
biomass biofuel systems?
• Nitrogen cycling
• Carbon cycling

1 PhD research of Amanda Lavigne
2 Sabbatical research – NREL 2004



Energy Security and 
Resource Conservation



Fossil Energy UsedFossil Energy Used

RenewableRenewable
BioenergyBioenergy

Diesel FuelDiesel Fuel

Natural GasNatural Gas

Electricity (coal)Electricity (coal)



Metrics – Energy Issues

Current – Net energy value
NEV = Energy out – “consumer” energy in

Alternatives – National Energy Policies
Energy Security
• % energy inputs that are imported

Energy Resource Conservation
• % energy inputs that are renewable

Global warming
• % energy inputs from fossil fuels

All quantified over lifecycle



Reported Corn Ethanol NEVs
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Corn vs. Stover

Net Energy Value

Corn: 6.6 MJ/L
Stover:   10.1 MJ/L



Define energy flows - NG
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Upstream
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Categorize
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Summary Energy Issues

Stover superior for all energy related 
metrics

Lower NEV
Much more renewable resources
Much less imported oil



Environmental Impacts:
Nitrogen and Carbon Cycling

Goal: Quantify environmental impacts associated 
with agricultural activities for corn and corn stover 
harvest

Greenhouse gas emissions

Eutrophication



The Nitrogen Cycle
Necessary for all living things
Natural cycles affected with conversion of N2
to NH3, NO3

-

Greatly increases agricultural yields
Excess reactive nitrogen responsible for many 
environmental problems

NHNH33

NONOxx

NONO33
--

NN22OO

AcidificationAcidification

Smog FormationSmog Formation

Human HealthHuman Health

Eutrophication/HypoxiaEutrophication/Hypoxia

Global WarmingGlobal Warming



Nutrients in water
Excess nutrients Excess nutrients 

discharged to waterdischarged to water

•• Algal BloomsAlgal Blooms

•• Excess aquatic Excess aquatic 
plant growthplant growth

EutrophicationEutrophication

Mutation in frogs from Mutation in frogs from 
excess N and P in aquatic systemsexcess N and P in aquatic systemshttp://www.nrel.gov/biomass/photos.html



National Scale Issues - Hypoxia
Too many nutrients - extreme 
eutrophication

Oxygen consumption reduced lethal

Gulf of Mexico along Louisiana coast 
D.O. < ~2-3 mg/L

First observed in mid-1980s

~15,000 km2 (~50 x 300 km) 
(~ size of Massachusetts)

Detrimental to ecosystem and economy



Carbon CyclingCarbon Cycling

COCO22 UptakeUptake

COCO22 EmittedEmitted
During Fuel During Fuel 
CombustionCombustion

Upstream Chemical and EnergyUpstream Chemical and Energy
Production and DistributionProduction and Distribution

CHCH44 , CO, CO22

releaserelease



Environmental Impacts

Carbon Related
Greenhouse gases
Fossil fuel 
depletion

Nitrogen Related
Nutrients in water
Acidification
Greenhouse gases

Organic carbon 
content in soil

Environmental Benefits: Carbon Cycle

VS.

Environmental Degradation: Nitrogen Cycle



Geographic System Considered

Proposed Study area in Iowa – Based on NAWQA Data for Eastern Iowa Watersheds
(Skunk, Cedar, Iowa and Wapsipinicon River systems)

Allows calibration between measured agrichemical fluxes and those estimated for LCI

Mississippi River

Wapsipinicon

Cedar

Iowa

Skunk

Area included in LCI based
on county boundaries

IOWA



Sources: Canter (1997), deVries (2003), Blackmer (1987)

Soil/plant system

Soil – N in org. matter
and sorbed (accumulation)

mineralization immobilization

Constraint: 
Steady state over long term

LCA Inventory 
Generate Model for Nitrogen Flows

Plants

nitrificationFN applied Ammonia /
ammonium

food / feed / energy

uptake

Soil solution
(NO3 + some NO2)



Sources: Canter (1997), deVries (2003), Blackmer (1987)

Soil/plant system

Constraint: 
Steady state over long term

Model for Nitrogen Flows
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Variable Nutrient Leaching
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Nitrogen outflows
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Eutrophication Potential
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Significance - Eutrophication
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Greenhouse Gas EmissionsGreenhouse Gas Emissions

COCO22 UptakeUptake

COCO22 EmittedEmitted
During Fuel During Fuel 
CombustionCombustion

NN22O releaseO release

Upstream Chemical and EnergyUpstream Chemical and Energy
Production and DistributionProduction and Distribution

CHCH44 , CO, CO22

releaserelease



Global Warming Potential

* Cradle to Farm Gate only * Cradle to Farm Gate only –– does not account for changes in carbon sequestereddoes not account for changes in carbon sequestered
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Summary – Carbon vs. Nitrogen
Benefits in Carbon related impacts

Carbon uptake and sequestration

Detriments in Nitrogen-related impacts
Eutrophication and hypoxia from excess 
nutrients significant water quality problem

N2O – significant contributions to GWP

Fundamental trade-off between global 
climate change and regional impacts of 
eutrophication



Summary – Corn vs. Soy

High nitrogen fertilizer rates for corn
Greater overall energy use
Much greater impacts from corn than 
soy in cradle-to-farm gate LCA

Based on perspectives shown here, 

Biofuels from soy or stover better for the 

environment than ethanol from corn

But…  Many other issues to consider 



Thank-you
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