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The Biomass Opportunity:
Large-scale Petroleum Displacement

and Bioindustry Enablement
• Move beyond grains to grains plus cellulosic crops 

– Key to achieving substantial petroleum displacement
and greatly expanding the bioenergy industry

• USDA/DOE’s “Billion Ton Vision”
http://feedstockreview.ornl.gov/pdf/billion_ton_vision.pdf

– More than 1.3 billion tons of cellulosic biomass (dry basis) 
is sustainably available domestically

– This amount can provide abundant cheap sugars for 
commodity biofuels (and bioproducts)
• Sufficient to displace 30% of current gasoline demand



Outline

• Composition of Cellulosic Feedstocks
• Biochemical Conversion Routes
• Enzymatic Cellulose Hydrolysis Pathway
• Remaining Technical Barriers/R&D Foci
• Outlook



http://maize.agron.iastate.edu/corngrows.html

Corn Grain vs. Cellulosics
Corn Stover and Beyond
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Composition: Grain vs. Cellulosics

Component
Corn
Grain

Corn
Stover

Switch-
grass

Trace Trace
60
10
6
5

13
6

100

63-74
14-18

3-5
1-3
2

6-8

90-110

Poplar

72-73 0
73

Lignin 0 21
Other Sugars 1-2 3
Protein 8-10 0
Oil/Other Extractives 4-5 3
Ash 1-2 0.5

Total 96-104 100

10-12
Starch
Cellulose/Hemicellulose

Constituent levels can vary by roughly ± 5% dry weight due to environmental and genetic factors



Cellulosic Biomass: Major Constituents
Lignin: 15%–25%
– Complex aromatic structure
– High energy content
– Resists biochemical conversion

Hemicellulose: 23%–32%
– Xylose is the second most 

abundant sugar in the biosphere
– Polymer of 5- and 6-carbon sugars, 

marginal biochemical feed

Cellulose: 38%–50%
– Most abundant form of carbon in 

biosphere
– Polymer of glucose, good 

biochemical feedstock
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Outline

• Composition of Cellulosic Feedstocks
Biochemical Conversion Routes

• Enzymatic Cellulose Hydrolysis Pathway
• Remaining Technical Barriers/R&D Foci
• Outlook



Routes to Biofuels

Bio/chemical 
transformation 
of natural 
compounds

Bio/chemical 
transformation 
of natural 
compounds

Ethanol 
from sugars
Biodiesel from 
renewable oils

Thermal reduction
to “syngas” 
(H2, CO) chemical 
building blocks

Thermal reduction
to “syngas” 
(H2, CO) chemical 
building blocks

Traditional 
chemistry
Fischer-Tropsch
diesel, gasoline
Methanol, 
other alcohols
(bio/catalytic)



The USDOE Biomass Program
Organized Around an Evolving Biorefinery Vision

Biomass as 
“The New 
Petroleum”—
and beyond:
Source of food, 
feed, fiber, and 
fuels (and 
chemicals)



Biochemical Conversion Pathways
• Hydrolysis/Sugar Fermentation

Categorize based on method for 
breaking down cellulose
– Dilute acid hydrolysis
– Concentrated acid hydrolysis
– Enzymatic hydrolysis

• After using any of a variety of 
different primary fractionation or 
“pretreatment” methods

• Gasification/Synthesis Gas 
Fermentation
– Thermochemical gasification 

followed by fermentative 
conversion of (cleaned up) 
syngas

Waste waterWaste water

Size
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Pretreat-
ment

Lignin
Utilization

Ethanol
Recovery

Saccharification/
Fermentor

Neutralization/
Conditioning

Cellulase
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Size
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Biomass

Clean Up/ 
Conditioning

Fermentor

Ethanol
Recovery

Syngas Production

Syngas Fermentation



Why Emphasize Enzymatic Route?
• Commercial processes based on enzymatic hydrolysis of cellulose 

don’t yet exist, but are believed to offer the best long-term potential 
for minimizing ethanol production costs
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Outline

• Composition of Cellulosic Feedstocks
• Biochemical Conversion Routes

Enzymatic Cellulose Hydrolysis Pathway
• Remaining Technical Barriers/R&D Foci
• Outlook



Feedstock 
Collection and 

Delivery

Pre-processing

Carbohydrate Conversion Steps

Ethanol and 
Solids Recovery, 
Water Recycle

Grain Mashing
Using Acid,
Jet Cooking,
and Enzymes

Glucose
Sugar

Fermentation

Amylases

STARCH 
“FUEL & FEED” 

PROCESS

Hexose Utilizing 
Microbe

Thermochemical
Pretreatment
Using Acid

or Alkali

Conditioning
Cellulose
Hydrolysis

Using
Enzymes

Cellulases

Mixed
Biomass

Sugar
Fermentation

STOVER       
“FUEL & ENERGY”

PROCESS

Hexose and Pentose 
Utilizing Microbe



100 g raw solids (dry)

Lignin 
coproduct

27 g (dry)

Process
intermediate

60 g (dry)

Coarsely milled
corn stover

Pretreated 
solids

Residue 
solids

Conversion is Technically Feasible…

…the Challenge is Making it Economical!



Feedstock Handling

CO2

Ethanol

Corn Stover

Lignin
Residue

Enzyme

Steam

Electricity

Steam & 
Acid Liquor

Pretreatment S/L Separation

ConditioningEnzymatic Hydrolysis
& Fermentation

Distillation &
Ethanol Purification

Wastewater
Treatment

Burner/Boiler
Turbogenerator

Lime

Steam

Gypsum

Conceptual Stover-to-Ethanol Process 



Cellulosics Must Compete with Starch
Corn Grain is King in America!
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Costs driven by
– Feedstock
– Coproduct value
– Utilities prices
– Capital equipment

• Pretreatment
• Enzyme Production
• Distillation
• Boiler/Combined 

Heat and Power

Cap. Depr.

Fixed

Enzymes

Chemicals

Feedstock

Coproduct

Corn Dry 
Mill

Enzymatic 
Stover

To
ta

l C
os

t



Opportunities and Challenges
• Lower operating cost

– Operating cost potentially 20-40% lower processing cellulosics
(highly feedstock cost dependent)

– Diversifying feedstock options hedges against rising grain or 
utilities prices

• Higher capital cost
– $2.5-4.0/annual gal for cellulosics vs. $1.0-1.5 for grain

• Potential for novel higher value coproducts
– Opportunity: New process streams provide opportunities
– Challenge: Disparate scales of fuels and coproducts markets



Cellulosic Ethanol Cost Reduction
Progress and Goals
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Techno-economic Barriers
Directing Research and Development

• Feedstock Valuation and Delivery
– Analytical methods/sensors
– Sustainable supply systems

• Biomass Recalcitrance to Conversion
– Pretreatment and enzymatic hydrolysis
– Pentose and/or mixed sugar fermentation

• Biorefinery Integration
– Depolymerization chemistry and process interactions
– Solids and non-Newtonian slurry handling



1st R&D Barrier: Cell Wall Recalcitrance
• Lignocellulose cell walls 

contain intermeshed
carbohydrate and lignin 
polymers and other 
minor constituents
– The major structural 

polymers – cellulose, 
hemicellulose, and 
lignin – exhibit 
differential reactivity to 
thermal, chemical, and 
biological processing

– By natural design, cell 
wall polysaccharides  
are more difficult to 
break down than 
storage carbohydrates 
like starch



High Solids Pretreatment Demonstrated
Key to High Sugar Concentrations and Lower Cost 

Relative Cost = f(Pretreatment Reactor Solids Loading)
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Enzyme Costs Have Fallen Sharply
• DOE Subcontracts to Genencor and Novozymes (cost-shared)

Focus: lower production cost, increase enzyme system efficacy
– Enzyme cost ($/gallon EtOH) = Prod. Cost ($/kg) x Usage Req. (kg/gallon EtOH)

Cellulase cost reduced to below $0.20/gal EtOH (by subcontract metric)

-1

+1

+2

-2

cellodextrin

Y82

CBH1 from T. reesei

E1 from A. cellulotiticus
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Enzyme Cost No Longer Showstopper



Learning How Molecules Move in Biomass
Through Imaging at Scale of Cell Wall Ultrastructure

Source: M. Himmel et al. (NREL, 2004) in collaboration with Colorado School of Mines EM Facility

1 mm

Pretreatment 
chemicals and
enzymes penetrate 
corn plant cell wall 
tissues through 
vessels and pits

SEM



2nd R&D Barrier: Pentosan Utilization
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Pentose Metabolism Pathway

EthanolEXT

D-GlucoseEXT
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3rd R&D Barrier: Process Integration
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Intensified Processing Key to High Titers
Example: Glucose Production from Whole Slurry
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High Solids Enzymatic Saccharification
Pretreated corn stover, 45ºC, 20 mg cellulase/g cellulose, 25% initial insoluble solids loading

Video shows how slurry rheology changes over 7 days of enzymatic cellulose hydrolysis
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Outlook
• Major progress being made

– Compelling operating costs within reach
– High solids processing promising to decrease capital hurdle
– Industry investments in R&D reducing commercialization risks

• More needed to achieve market competitiveness, 
especially for more costly feedstocks
– Sustainable feedstock supply systems must be developed
– Process(es) must be proved at scale
– Societal/Environmental benefits must be rigorously validated 

• Breakthroughs will spur deployment – key to achieving 
leap forward economics
– Overcoming recalcitrance
– Robust ethanologens (>10% ethanol on pentoses/mixed sugars)
– New value-added commodity coproducts
– Supportive legislation/policies`



More Information
• The National Renewable Energy Laboratory:

http://www.nrel.gov

• DOE’s Biomass Program:
http://www.eere.energy.gov/biomass/

• DOE-USDA Biomass R&D Initiative:
http://www.biomass.govtools.us/

• Alternative Fuels:
http://www.afdc.doe.gov

http://www.nrel.gov/
http://www.eere.energy.gov/biomass/
http://www.biomass.govtools.us/
http://www.afdc.doe.gov/
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