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Metabolic Engineering (ME)

Metabolic engineering is the improvement of cellular activities by
manipulation of enzymatic, transport, and regulatory functions of
the cell with the use of recombinant DNA technology. The oppor-

— Rice Alumnus!l]

Genotype Engineering

— Molecular biology tools;
Genetic engineering tools

Phenotype Characterization
QuickTime™ and a Fermentation profiling;

e oo e Metabolic flux/control analysis;

Functional genomics tools

Integration and Design

FARSS Systems biology tools;
Bioinformatics, computers models




Systems Biology

A relatively new field that aims at systems level
understanding of biological processes

The two Determinants of Systems Biology

1. New technologies for comprehensive, high-throughput,
quantitative measurements at system/cellular levels: 1.e.,
functional genomics tools.

2. Advances In theory, modeling, softwares, and
computational power for data analysis and integration.
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Chemicals from Biomass

* The sugar platform is based on extracting sugars from plant biomass and
using them as substrates (feedstocks) for the production of fuels and
chemicals, predominantly via fermentation processes. This is the platform

that includes cellulosic ethanol.

» The syngas platform proposes to process the plant biomass thermally
(pyrolysis/combustion) to obtain heat, power and a gas mix (syngas or
synthesis gas) containing CO, CO,, H,, and other compounds. Syngas will
then be processed via various chemical or fermentation routes to produce
ethanol and other chemicals.

 The oil platform is related to biodiesel or bio-distillate production.

Vegetable oils or animal fats are used biodiesel (a mixture of fatty acid

methyl esters) or process it into bio-distillates via conventional refinery
technology.
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== EtOH/BUOH...Fuels or Chemicals
from Cellulosic Biomass

Biulnass —» Enzyme production
Size reduction Cellulases /
hemicellulases
l l CBP
Pretreatment . Enzymatic
& detoxfication hydrolysis
Sugars
l SSF

— Lignin

Fermentation

Dharmadi and Gonzalez (2006)
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Fuels & Chemicals from
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== Conversion of Plant Biomass Sugars
Into Fuels & Chemicals via Fermentation

I Planit RIomass

-SuUgans

Microbial l fermentation

l Chemicals and fiuels

Escherichia coli, Zymomonas,
Lactobacillus, Clostridium,
Saccharomyces, Xylose-

Assimilating Yeasts

Search for the ideal biocatalyst

Broad substrate utilization range
(C5/Cb)

Co-fermentation of C5/C6

High titer, yield, and productivities
High tolerance to final product
Minimal nutrients requirements
Resistance to inhibitors in
hydrolysates

No oxygen requirement

Available genetic tools and
physiological knowledge

Low fermentation pH

Use in large-scale fermentations and
production on an industrial level



=== Sugar-Utilization Regulatory Systems
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Systems Biology-Based Approach
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SURS and Ethanol Tolerance
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To elucidate the topology of a regulatory network

 The network Is broken down to the smallest elements: genes,
proteins, metabolites, phoshorylated/unphosphorylated species,
allosteric effectors, transcriptional repressors/activators, etc.

By arrangement of these n elements into a n X n table, the
network iIs then rebuilt from the ground up through complete
enumeration of all possible n(n-1) interactions.

e This 1s easily done using a spreadsheet, which also prevents
circular reference in building inferences, and accommodates
network expansion/reduction by simple row and column
Insertion/deletion.

Dharmadi and Gonzalez. (2006).



Elementary Network Decomposition
(END)
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Dharmadi and Gonzalez. (2006).



“END” Features

(1) All knowledge about regulatory interactions in the network can b
catalogued/summarized/integrated within a compact representation.

(2) Construction of END requires no aesthetic effort in spatial
arrangement of the network elements.

(3) New elements and knowledge can be easily appended, and
conversely, smaller subsets of the network can be easily extracted.

(4) Correlations between network elements are self-consistent and
explicitly presented.

(5) Once mechanistic interactions are set as highest-level entries, other
Interactions can be inferred in a self-consistent manner through
simple rules of arithmetic multiplication and addition.

(6) END can show how exertion of regulatory control can propagate
through cooperativity with lower-level interactions.

(7) END is potentially useful as discovery tool for uncovering
hidden regulatory structures: emerging properties.

Dharmadi and Gonzalez. (2006).



END of SURS: Role of Mlc
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END of SURS: Role of Mlc
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SURS and
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Role of Mlc on Xylose Utilization
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Dharmadi and Gonzalez. (2006).



xylAB

PPP genes
p ===3> Glycolysis

<
™) a
25

araBAD
(xyI/Ara)‘”‘

»mlc \.
A ]

SURS and

Fermentation

—.

-

Crreniy]
2 A::—!:

RS remane L YT
S

:xyIAB xylFGH

al

ptsl i
o~ PYR

fermentative genes

xylEf

FS
raBAD araFGH arag,’

J

and Execution of

Verification; Design

P-HPr

sGIc 6P <3
Glc
HASC

ptsH

-----------------

Conceptual and/or

Mathematical
Model

Elementary Network

Decomposition (END)

A priori
Knowledge
New/Updated
Knowledge
Inductive Inference
Synthesis ) SyStem_S
Biology-Aided
T Pathway Discovery
Hyp—othesis

Deductive Inference
Prediction and/or

Experiments

Glucose
Xylose
Cell growt!

Hypothesis
Formulation
Growth of W3110
Gluc. yes
Xyl. Ves

Growth of Amlc

Xyl.

Gluc.

€S

o
= %
eft ?:i) a nl_ 8
clalglglol2]. ]4lLl 8
s|lolo|lal=|S|E|l 2123
crp 1| 1]-02][-07[-11
CRP 1.0 -0.1] -0.3] -0.5
CRP-cAMP| -1] -1 -0.1]:0.2[ -04 -0.1
cyaA 1, Th 1
AC N
cAMP 1.0
crr 1 1 1
A"
IIAY~P 1=
glucose™| -1| -1 -1 0.1] 0.2] 0.2
CRP-cAMP\ _ /CRP-cAMP) /cyaA <CRP-CAMP> HAYC ~ p
AC /T \ oaAa JNac/*\ua®-p AC
= (-0.1)(1) + (-0.1)(1) =-0.1 $0.1 =-0.2
END of SURS: Role of Mlc
=
S &
q S| 2| o
= o o
5121 S| £ 2|l |s
CRP-cAMP -0.2 -0.4 -0.1 1
AC 1 1
cAMP 1 1
IIAglc~P 1 1 1
ptsG -1 -1 -1 -1 > 2
xyl
mic 2w L1
Mic 1 ol—
c\/mlc Mlc ptsG
—— N =(-DOD(2)=-2
xyl mic /\Mlc ptsG

— <Am|c>: <Am|



DNA Microarrays:
Experimental procedure
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Adapted from Affymetrix (www.affymetrix.com)



A Novel Data Mining Method to
Identify Assay-Specific Signatures In
Functional Genomic Studies

Assay characteristics
1% EtOH in the 2% EtOH
initial medium  challenge

Assay Strain  Sugar

1 KO11l Glucose NO NO
2 LY0l Glucose NO NO
3 KO11 Xylose NO NO
4 LY0l Xylose NO NO
5 KO11 Glucose YES NO
i LY0l Glucose YES NO
7 KO11l Xylose YES NO
8 LYDl Xylose YES NO
9 KO11 Glucose NO YES
10 LY0l Glucose NO YES
11 KO11l Xylose NO YES
12 LY0l Xylose NO YES

Rollins, Zhai, Joe, Guidarelli, Murarka, and Gonzalez. (2006). BMC Bioinformatics: 7, 377.
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Assay Contribution: Identifying
Assoclating Between Assays and
Principal Components

©EAL = EAZ 4 EA3 - “ o "4 The EAs efficiently
Identify signatures
corresponding to ethanol-
o xS and non-ethanol-
N i ; ) A N challenged cultures,
N A A A x 1 presence and absence of
O 60 0% o ethanol in the initial
o & culture medium, and a
strain-specific signature
4 8 12

Assay Number

Rollins, Zhai, Joe, Guidarelli, Murarka, and Gonzalez. (2006). BMC Bioinformatics: 7, 377.



ldentifying Response-to-Ethanol

Gene contribution
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Complete gene signatures and subset of genes contributing the most
to each signature are identified by the existence of points of inflection
and maximum curvature, respectively.

Rollins, Zhai, Joe, Guidarelli, Murarka, and Gonzalez. (2006). BMC Bioinformatics: 7, 377.



ldentifying Response-to-Ethanol

Signhature
Gene Expression Gene Expression
Name Rank IORatio Name Rank II:-'?eatio
yaiD 1 298.3 ygjK 1 -20.9
argH 2 170.0 tktA 2 -5.2
mngA 3 85.6 dsbC 3 -8.5
plsC 4 76.9 CVrA 4 -2.3
caiA 5 300.3 nrfE 5 -11.9
yebU 6 51.6 yehl 6 -19.2
ylbF 7 29.9 ybbA 7 -4.1
nrfG 8 46.8 evgs 8 -16.2
yalY 9 27.6 ynfE 9 -14.4
pnp 10 4.9 pgiB 10 -3.7

Many of the top-ranked genes encode functions that one would expect to be involved in the cellular
response to an ethanol challenge such as the metabolism and transport of osmolytes (mngA, cvrA, and
caiA), the biosynthesis of phospholipids (plsC) which are major constituents of the cell membrane, and
the repairing of misfolded proteins (dsbC). In fact, increased tolerance to ethanol in certain E.coli strains
is related to the increased availability of osmolytes like betaine and trehalose.

Rollins, Zhai, Joe, Guidarelli, Murarka, and Gonzalez. (2006). BMC Bioinformatics: 7, 377.



SURS and
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Biorefinery
Production of Acetate: Yields
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Obtained acetate yields ~90% of the maximum theoretical value
Smith et al., (2006). (in prep.)



The “Oil” Platform

Fats and Oils
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World Production of Biodiesel
(Million liters)

Figure 2. World Biodiesel Production, 1975-2005

iiiii

4,000
Table 2. Top Five
Biudie;el Producers
3000 in 2005
(million liters)

E Germany 1,920
g France 511
= 2,000  United States 290
— Italy 227
= Austria 83

1,000  Source: F 0. Licht

] Source: F.O. Licht

l l I l
1975 1880 1985 1990 19895 2000 2005

Biofuels For Transportation: Global Potential and Implications for Sustainable Agriculture and Energy in the 215t Century.
Worldwatch Institute and German Agency for Technical Cooperation: www.worldwatch.org/pubs/biofuels.



It Is Not a Garage Industry!!

QuickTime™ and a
TIFF (LZW) decompressor
are needed to see this picture.

Holmes, E. T. (Holmes Associates LLC). (2005). Biodiesel Southeast Perspective. Biofuels
Workshop & Trade Show in Atlanta, Georgia, October 11, 2005



Biodiesel Process Flow (Lurgi PSI) =/,

QuickTime™ and a
TIFF (LZW) decompressor
are needed to see this picture.

Holmes, E. T. (Holmes Associates LLC). (2005). Biodiesel Southeast Perspective. Biofuels
Workshop & Trade Show in Atlanta, Georgia, October 11, 2005



Crude Glycerin Prices

50
O Crude 80% Basis
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QuickTime™ and a
TIFF (Uncompressed) decompressor
are needed to see this picture.

Since 1865, The Jacobsen has been recognized as the most insightful and accurate resource for
commentary and daily spot market prices for the agricultural by-products industry.



June 2004 - NREL/TP-510-34796
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New Glycerol Platforms

QuickTime™ and a
TIFF (LZW) decompressor
are needed to see this picture.



==z Anaerobic Fermentation of Glycerol in E. coli
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that the metabolism of glycerol in E. coli is
restricted to respiratory conditions: i.e., an

external electron acceptor is needed. 4 /
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