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Contaminants of Concern with Fuel Spills: BTEX

Two Potential Effects of EtOH on BTEX Fate and Transport: 
• Physico-chemical (Co-solvency and mobilization of BTEX) 
• Microbial (Effect on BTEX biodegradation) 
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México, D.F.



~10 years

Gasoline reformulation (MTBE) and catalytic converters 
improved air quality in urban areas

Los AngelesLos Angeles



Soil and Groundwater Pollution



Distribution of Key Constituents in 
Gasoline-Contaminated Groundwater
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Background

Ethanol is a good oxygenate (reduces air pollution 
from combustion), renewable, biodegradable, non-
toxic, and can serve as substitute fuel for imported oil 
(good for trade balance and food security).  But... 

How does ethanol affect BTEX migration, 
degradation and natural attenuation, and what is 
the overall effect on the resulting plume length? 

Food for fuel?  
Tax subsidy ($0.51/gal) = corporate welfare for 

corn growers and ethanol producers?
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Simplified Life Cycle of Fuel Ethanol



Pilot Ethanol Spill Tank (PEST)
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Hydrocarbon NAPL Formation & Movement

Flow

t = 1 day

Wall

Hydrocarbons
(NAPL)

E95E95
+ Sudan red+ Sudan red

Ethanol decreases the surface tension and the capillary forces, 
which facilitates flow through the capillary zone. This spreads 
out the oily phase (Non-Aqueous Phase Liquid - NAPL)



Cumulative Breakthrough Shows
Excellent EtOH Mass Balance + Retardation

Normalized Mass Recovery from Combined Outlets 
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Concentration profiles 
show that EtOH
migrated in a thin 
layer at the water 
table interface (little 
vertical dispersion 
compared to tracer)

Cápiro N.L, B. P. Stafford, W.G. Rixey, P.J.J. Alvarez, and P.B. Bedient (2006). Water Research (In Press)
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Effect of Ethanol on Aerobic Toluene Degradation 
Activity in Chemostats with Different Archetypes
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Bioreporter Strain
Pseudomonas putida F1 with tod-lux

• Fused a reporter gene (lux) with    
the tod catabolic gene

• When the tod gene is induced, the 
reporter gene is also expressed 
producing luciferase, which emits a 
signal (e.g., light)

• The signal (measured with a 
luminometer) is proportional to       
the level of induction

PpF1 with tod-lux fusion

Toluene 
(inducer)

reporter gene (lux) catabolic genes (tod)

promoter/operator
reporter signal (e.g., light)

reporter protein

catabolic enzymes (TDO)



Enzyme induction and toluene metabolic flux  
decreased with increased ethanol availability

Influent ethanol (mg/L as TOC)
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Adding 1 mg/L ethanol enhanced benzene degradation   
by PpF1 due to an increase in the microbial concentration
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Implications of Chemostat Results

The inhibitory effect of ethanol on specific BTEX 
degradation activity (catabolite repression and 
metabolic flux dilution) can be offset by additional 
cell growth. However, ethanol-driven depletion of 
nutrients and electron acceptors (e.g., O2) is 
likely to hinder the natural attenuation of BTEX.  



Aquifer Column 
Experiments
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Effect of Ethanol versus MTBE on Benzene Attenuation
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Effect of ethanol on ORP, acetate production and pH
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DGGE Analysis of the Effect of EtOH on 
Microbial Community Structure

BTEXBTEX BTEX +        BTEX +BTEX +        BTEX +
alone            alone            EtOHEtOH MtBEMtBE

Inlet      40cm      Inlet     40cm     Inlet      40cm      Inlet     40cm     EntraEntra-- 40cm40cm

Dominant Species

A - Geobacter akaganeitreducens
B - Geobacter sp.
C - Clostridium sp.
D - Azoarcus sp.
E - Campylobacter sp.
F - Clostridium sp.
G - Desulfovibrio burkinensis
H - Sporomusa sp.
I - Clone WCHB1-71
J - Failed
K - Clone SJA-181

Da Silva M.L. and P.J.J. Alvarez (2002). J. Env. Engrg. 128(9):862-867.



DGGE Analysis of the Effect of EtOH on 
Microbial Community Structure

BTEXBTEX BTEX +        BTEX +BTEX +        BTEX +
alone            alone            EtOHEtOH MtBEMtBE

Inlet      40cm      Inlet     40cm     Inlet      40cm      Inlet     40cm     EntraEntra-- 40cm40cm

Da Silva M.L. and P.J.J. Alvarez (2002). J. Env. Engrg. 128(9):862-867.

= Genotypic Dilution



Potential Ground Water Impacts of EtOH-
Plume Conceptual Model
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IOWA: 218 sites 
low probability of EtOH

KANSAS: 29 sites 
with EtOH (10% v:v)

The Midwest Plumathon
Is the elongating effect of ethanol on BTEX plumes significant?

For each site, determined benzene & toluene plume lengths



What is the Overall Effect of Ethanol?
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Ruiz-Aguilar G.M, K. O’Reilley,  and P.J.J. Alvarez (2002). Ground Water Monitoring and Remediation. 23(1):48-53



Fazenda Ressacada



Field Experiment (sandy, homogeneous aquifer)

100 L gasoline (24% ethanol)
added at the water table
1kg KBr tracer dissolved in water



45 Monitoring Well Clusters
Sampling depths: 1; 2; 2.5; 3.5 & 4.5 m
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Migration of Bromide Tracer

Brometo
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Maximum, extension of ethanol plumeMaximum, extension of ethanol plume
15 m (2 years)15 m (2 years)

Disappeared in less than 3 yearsDisappeared in less than 3 years
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Conclusion  
Ethanol can hinder the 
natural attenuation of 
benzene, which could result 
in longer plumes and a higher 
risk of exposure. However, 
the significance of this effect 
is probably site-specific, 
largely depending on the 
release scenario and the 
available e- acceptor pool.



Any Questions?Any Questions?



Fuels from Biomass Feedstock

1850 Transesterification of vegetable oils (bodiesel) 

1898 Rudolph Diesel demonstrates compression ignition 
engine using peanut oil. Vegetable oils were used in 
diesel engines until the 1920's

1908 Henry Ford used hemp-derived ethanol for Model T.

1930 Biofuel sales are undercut by petroleum industry and 
the interests of some industrialists (Hurst, Rockefeller)

1978 Second oil crisis renews interest in biofuels

2000 Grease car



Plant-Based Fuels (biodiesel, EtOH, & H2) 
Can Address Three National Interests

(1) Minimize dependence on foreign oil and improve our 
trade balance

(2) Steer the impending growth of biomass-based 
industries to protect environmental quality, and 

(3) Invigorate agricultural activity and rural economy for 
food security.



Environmental 
Impact?

Water, Air, Soil
Human and 
EcologicalMarketingMarketing

ProductProduct
Development Development 

FinalFinal
Disposal to Disposal to 

the Environmentthe Environment

Transport Transport 
Distribution,Distribution,

SellSell
PackagingPackaging

New Product IdeaNew Product Idea

ManufactureManufacture

Use byUse by
Consumer Consumer RecycleRecycle Reuse

Minimize Minimize 
WasteWaste

RemanufactureRemanufacture
RecycleRecycle

taketake--backback

Life Cycle Assessment and Engineering Is NeededLife Cycle Assessment and Engineering Is Needed



Fuel Production

Life Cycle - Fuel Ethanol

Process 
chemicals

Farm

UFT

Ethanol
processing

Ethanol bulk
storage

Gasoline bulk
storage

Fertilizer
pesticides Energy

Energy

Petroleum
Life

Cycle

Co-products

Vehicle Use

Feedstock

Modified after D. W. Rice, S.E. Powers, and P.J.J. Alvarez (1999).  Potential Scenarios for 
Ethanol-containing Gasoline Released into Surface and Subsurface Waters. In: Health and 
Environmental Assessment of the Use of Ethanol as a Fuel Oxygenate –Lawrence Livermore 
National Laboratory, Livermore, CA, UCRL-AR-135949 Vol. 4, Ch. 1.



Feedstock Production

CO2 uptake
Water consumption
Energy use, associated emissions
Land use
Fertilizer & pesticide use and associated soil/water contamination
Biodiversity and genetic drift issues if genetically engineered corn is used
Erosion and Soil health
Food versus fuel?

Farm

Fertilizer
pesticides

Energy



Fuel Processing & Transportation

Gluten Feed
CO2
Etc.

Ethanol
processing

Process 
chemicals

Ethanol bulk
storage

Energy

Co-products

USTEthanol spills
co-sovency
alkylates, 
additives?

Ethanol spills
High BOD, fish kills

Energy use
Air and water emissions
Water consumption
Yeast and enzyme use

Fossil fuel use
Air emissions          

Fossil fuel use
Air emissions
higher HC emissions 
due to reduction in VP



Vehicle Use

Direct discharge to SW bodies

Decreased fossil fuel use
Reduced CO air emissions 
(oxygenate)Unintended releases 

to soil and subsurface
co-solvency,
MNA inhibition

Potentially higher HC emissions due to reduction in VP
Increased amount of alkylates, decreased amount of BTEX
Impacts to vehicle lifecycle?

UFT



Sustainable Biofuels: Research Needs  

1. Develop a comprehensive (comparative) LCA 
framework for the production, storage, distribution, 
and use of biomass-based renewable fuels 
(biodiesel, ethanol and H2); e.g.,

Changes in urban air quality (+ or -)?

Carbon balances (decarbonization, soil health and       
global climate implications)?

Potentially problematic fuel components and impurities? 
(environmental analysis, ecotoxicology, fate and transport)

Changes in land use, erosion, pesticide and fertilizer 
application and implications on environmental quality?



2. Enhance biofuels economic feasibility and environmental 
viability (e.g., biocatalysis, NEV, CO2 emissions trading)

Control energy flows and increase net energy value   
(N2 fixation)

“Greener” replacements for hazardous substances used 
in life cycle (e.g., bioinsecticides; biocatalysis).

Decrease biodiesel melting point for enhanced winter 
performance (shorter, saturated fatty acids).

Alternative biomass sources for H2 and biodiesel
(algae, lignocellulosic agricultural waste). 

CO2 emission credits for replacing petroleum

Biofuel Research Needs (cont’d)



Sustainable Sustainable ≠≠ Green Green 
Society

Productivity
Technological growth

Profit   &   employment

Environment

Economy

Pollution Control

Biodiversity
Natural resources protection 

and restoration

Culture

Social and 
generational justice

Stakeholder
participation

Informed citizenry

Wastes
Water usage
Energy use

Materials use
Ecosystem health

Quality of life
Equity
Health



Industrial Ecology

• It is a multidisciplinary framework  to design 
and operate  industries as if they were living 
entities interacting with ecosystems.  

• Seeks to attain a balance between economic 
gains and ecological and global interests. 

• It is the science behind sustainable 
development. 



Natural EcologyNatural Ecology
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Industrial EcologyIndustrial Ecology
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Reported NEV Corn Ethanol
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Sustainable Biofuels: Research Needs  

1. Develop a comprehensive, comparative LCA 
framework for the production, storage, 
distribution, and use of biomass-based 
renewable fuels (e.g., H2, biodiesel, and ethanol)

2. Enhance biofuels economic feasibility and 
environmental viability (e.g., biocatalysis, NEV, 
CO2 emissions trading)



Potential Environmental Impacts

Emissions to Soil, Air, Water
Fossil fuel consumption 
CO2 – climate change
Material consumption
Land use
Soil quality

Accidental spills 
and releases

Figure adapted from GREET, Argonne Nat’l Lab



drinking water

resource water

water treatment

input pathways

wastewater
treatment

agricultureurban surface
runoff

domestic
industrial
effluents

contaminant
source

traffic
surface
materials

land 
management

barrier systems

source control
measures

ecotoxicology

human toxicology

Future: from barrier systems to source control



Conventional Design Conventional Design 
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ManufactureManufacture ProductProduct
UseUse

RawRaw
MaterialsMaterials

EnergyEnergy
Efficiency Efficiency 

Energy Energy 
EfficiencyEfficiency

Waste minimization
Safe disposal

Innocuous end products 

Remanufacture, RecycleRemanufacture, Recycle

ReuseReuseRecycleRecycle

Green DesignGreen Design
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E95 Addition

Six ¼ inch stainless steel 
injection wells at water table. 
20-gallons of E95 was 
injected over a 3-h period.
The 5% NAPL in E95 
contained B (0.5%), T (5.7%), 
m-X (11.9%), OCT (52%) & 
TMB (29.9%).
Plexiglas walls down to the 
water table on either side of 
the source wells to try contain 
spreading in vadose zone.



Contaminants of Concern: BTEX

• Benzene can cause leukemia (of most concern) 
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