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Contaminants of Concern with Fuel Spills: BTEX
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Benzene Toluene Ethylbenzene
H, Hy CH,
CH,
CH,
CH,
0-Xylene m-Xylene p-Xylene

Two Potential Effects of EtOH on BTEX Fate and Transport:
* Physico-chemical (Co-solvency and mobilization of BTEX)
« Microbial (Effect on BTEX biodegradation)
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Gasoline reformulation (MTBE) and catalytic converters
iImproved air quality in urban areas




Soill and Groundwater Pollution




Distribution of Key Constituents in
Gasoline-Contaminated Groundwater

MtBE Benzene

CH,—C—O— CH,

CH,

A potential carcinogen
that smells and tastes
like turpentine




Background

Ethanol is a good oxygenate (reduces air pollution
from combustion), renewable, biodegradable, non-
toxic, and can serve as substitute fuel for imported oil
(good for trade balance and food security). But...

Food for fuel?
Tax subsidy ($0.51/gal) = corporate welfare for

corn growers and ethanol producers?

» How does ethanol affect BTEX migration,
degradation and natural attenuation, and what is
the overall effect on the resulting plume length?



Natural Attenuation
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Simplified Life Cycle of Fuel Ethanol

Ethanol Gasoline

Inter/intra state
pipeline
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APL Formatlon & Movement

..........

Hydrocarbons
 (NAPL)

Flow

Ethanol decreases the sUrfce ten-i'o-n and the capillary forces,
which facilitates flow through the capillary zone. This spreads
out the oily phase (Non-Aqueous Phase Liquid - NAPL)



Cumulative Breakthrough Shows
Excellent EtOH Mass Balance + Retardation

Normalized Mass Recovery from Combined Outlets
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Effect of Ethanol on Aerobic Toluene Degradation
Activity In Chemostats with Different Archetypes
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Bioreporter Strain

Pseudomonas putida F1 with tod-lux

» Fused a reporter gene (lux) with
the tod catabolic gene

 When the tod gene is induced, the
reporter gene is also expressed
producing luciferase, which emits a
signal (e.g., light)

» The signal (measured with a
luminometer) is proportional to
the level of induction

v v
v Yy

v YToluene catabolic enzymes (TDO)

|nducer
*
’_@reporter gene (qu)| catabollc genes (tod) |

promoter/operator ¥

reporter signal (e.g., light)

reporter protein

PpF1 with tod-lux fusion




Enzyme induction and toluene metabolic flux
decreased with increased ethanol availability
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Adding 1 mg/L ethanol enhanced benzene degradation
by PpF1 due to an increase in the microbial concentration
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Implications of Chemostat Results

The inhibitory effect of ethanol on specific BTEX
degradation activity (catabolite repression and
metabolic flux dilution) can be offset by additional
cell growth. However, ethanol-driven depletion of
nutrients and electron acceptors (e.g., O,) Is
likely to hinder the natural attenuation of BTEX.
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Effect of Ethanol versus MTBE on Benzene Attenuation
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Effect of ethanol on ORP, acetate production and pH
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DGGE Analysis of the Effect of EtOH on
Microbial Community Structure

BTEX +
EtOH

Dominant Species

A - Geobacter akaganeitreducens
B - Geobacter sp.

C - Clostridium sp.

D - Azoarcus sp.

E - Campylobacter sp.

F - Clostridium sp.

G - Desulfovibrio burkinensis
H - Sporomusa sp.

| - Clone WCHB1-71

J - Failed

K - Clone SJA-181

Da Silva M.L. and P.J.J. Alvarez (2002). J. Env. Engrg. 128(9):862-867.



DGGE Analysis of the Effect of EtOH on
Microbial Community Structure

BTEX BTEX +
alone EtOH

= Genotypic Dilution

Da Silva M.L. and P.J.J. Alvarez (2002). J. Env. Engrg. 128(9):862-867.



Potential Ground Water Impacts of EtOH-
Plume Conceptual Model

Benzene plume without ethanol.

Concentration

Distance

Benzene plume with ethanol.

Concentration
Ethanol degradation
zone

Distance






The Midwest Plumathon
Is the elongating effect of ethanol on BTEX plumes significant?

IOWA: 218 sites
low probability of EtOH

.
_______
Py

KANSAS: 29 sites
with EtOH (10% v:v)

For each site, determined benzene & toluene plume lengths



What is the Overall Effect of Ethanol?

MEAN PLUME DIMENSIONS
No EtOH (& /U_LL> 159 ft
(lowa) \ 7
B 56 %
With EtOH <0.05
(Kansas) W> 248 ft p
No EtOH
(lowa)
T 21 %
With EtOH
(Kansas) 187 ft

50 100 150 200 250
Feet
Ruiz-Aguilar G.M, K. O'Reilley, and P.J.J. Alvarez (2002). Ground Water Monitoring and Remediation. 23(1):48-53
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Field Experiment (sandy, homogeneous aquifer)

100 L gasoline (24% ethanol)
added at the water table




45 Monitoring Well Clusters
Sampling depths: 1; 2; 2.5; 3.5& 4.5 m
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Migration of Bromide Tracer
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Evolution of Etanol Plume
Days: 974

Pocos de monitoramento
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Evolution of BTEX Plume
Days: 1150
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Conclusion

Ethanol can hinder the
natural attenuation of
benzene, which could result
In longer plumes and a higher
risk of exposure. However,
the significance of this effect

Will

is probably site-specific, Ethanol-Blended
largely depending on the GAasoIme

available e~ acceptor pool. Quality?




Any Questions?




Fuels from Biomass Feedstock

1850 Transesterification of vegetable oils (bodiesel)

1898 Rudolph Diesel demonstrates compression ignition
engine using peanut oil. Vegetable oils were used in
diesel engines until the 1920's

1908 Henry Ford used hemp-derived ethanol for Model T.

1930 Biofuel sales are undercut by petroleum industry and
the interests of some industrialists (Hurst, Rockefeller)

1978 Second oll crisis renews interest in biofuels

2000 Grease car



Plant-Based Fuels (biodiesel, EtOH, & H.)
Can Address Three National Interests

(1) Minimize dependence on foreign oil and improve our
trade balance

(2) Steer the impending growth of biomass-based
Industries to protect environmental quality, and

(3) Invigorate agricultural activity and rural economy for
food security.



Life Cycle Assessment and Engineering Is Needed
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. Feedstock
Fertilizer
\
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Life
Ethanol Cycle
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Modified after D. W. Rice, S.E. Powers, and P.J.J. Alvarez (1999). Potential Scenarios for
Ethanol-containing Gasoline Released into Surface and Subsurface Waters. In: Health and
Environmental Assessment of the Use of Ethanol as a Fuel Oxygenate —Lawrence Livermore
National Laboratory, Livermore, CA, UCRL-AR-135949 Vol. 4, Ch. 1.



Feedstock Production

5=

COz uptake \

Water consumption

Energy use, associated emissions

Land use

Fertilizer & pesticide use and associated soil/water contamination
Biodiversity and genetic drift issues if genetically engineered corn is used
Erosion and Soil health

Food versus fuel?




Fuel Processing & Transportation

Process Energy use o
Air and water emissions

Water consumption

Fossil fuel use

/ \% Air emissions
Ethanol pulkl higher HC emissions
storage due to reduction in VP

Fossil fuel use

Co-products
.ll RFG ==

Gluten Feed Air emissions ». 00

CO, Ethanol spills / \

Etc. High BOD, fish kills /
Ethanol spills
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Vehicle Use

B/
UFT

¥ |
Unintended releases
to soil and subsurface

co-solvency,
MNA inhibition

Decreased fossil fuel use
Reduced CO air emissions
(oxygenate)

Direct discharge to SW bodies

Poftentially higher HC emissions due to reduction in VP
Increased amount of alkylates, decreased amount of BTEX
Impacts to vehicle lifecycle?



Sustainable Biofuels: Research Needs

1. Develop a comprehensive (comparative) LCA
framework for the production, storage, distribution,
and use of biomass-based renewable fuels
(biodiesel, ethanol and H,); e.g.,

Changes in urban air quality (+ or -)?

Carbon balances (decarbonization, soil health and
global climate implications)?

Potentially problematic fuel components and impurities?
(environmental analysis, ecotoxicology, fate and transport)

Changes in land use, erosion, pesticide and fertilizer
application and implications on environmental quality?



Biofuel Research Needs (cont’d)

2. Enhance biofuels economic feasibility and environmental
viability (e.g., biocatalysis, NEV, CO2 emissions trading)

Control energy flows and increase net energy value
(N, fixation)

“Greener” replacements for hazardous substances used
In life cycle (e.q., bioinsecticides; biocatalysis).

Decrease biodiesel melting point for enhanced winter
performance (shorter, saturated fatty acids).

Alternative biomass sources for H, and biodiesel
(algae, lignocellulosic agricultural waste).

CO, emission credits for replacing petroleum



Sustainable # Green

Society

Culture

Social and
Productivity generational justice
Technological growth

Stakeholder
Profit & Jemployment | haricipation

Informed citizenry

Energy use Ecosystem health
Materials use

Pollution Control

Biodiversity
Natural resources protection
and restoration

Environment



Industrial Ecology

* |t I1s a multidisciplinary framework to design
and operate industries as If they were living
entities Interacting with ecosystems.

» Seeks to attain a balance between economic
gains and ecological and global interests.

e |t Is the science behind sustainable
development.



Natural Ecology
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Industrial Ecology
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Reported NEV Corn Ethanol

BTUs / Gallon of Ethanol
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Sustainable Biofuels: Research Needs

1. Develop a comprehensive, comparative LCA
framework for the production, storage,
distribution, and use of biomass-based
renewable fuels (e.g., H,, biodiesel, and ethanol)

2. Enhance biofuels economic feasibility and
environmental viabllity (e.qg., biocatalysis, NEV,
CO, emissions trading)



Potential Environmental Impacts

Emissions to Soil, Air, Water
Fossil fuel consumption

CO, — climate change
Material consumption
Land use
Soil quality

Matenal Production J

Through
__Vehide Assambling
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Feedstock :f~| Fuel :;:—I \Vehicle {jpgmﬁnnJ

................................ D :_l-'
hd v
. . Vehicle Disposal
Accidental spills [ & Recycling
and releases

Figure adapted from GREET, Argonne Nat'l Lab



Future: from barrier systems to source control

source control
measures

- - agriCU|tu N

barrier systems
input pathways

resource water ecotoxicology

drinking water human toxicology




Conventional Design
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Green Design

Energy Energy
Efficlency Effi(Iency
Waste minimization
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m Six ¥4 Inch stainless steel
Injection wells at water table.

m 20-gallons of E95 was
Injected over a 3-h period.

m The 5% NAPL in E95

m-X (11.9%), OCT (52%) &
TMB (29.9%).

m Plexiglas walls down to the
water table on either side of )
the source wells to try contain & &
spreading in vadose zone. w




Contaminants of Concern: BTEX

O O O

Benzene Toluene Ethylbenzene
H, Hy CH,
CH,
CH,
CH,
0-Xylene m-Xylene p-Xylene

 Benzene can cause leukemia (of most concern)
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